友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

科学史及其与哲学和宗教的关系-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



棱两可的实体吧。 

  病毒转移的方法有多种。在动物寄主身上病毒可以通过血液、神经或淋巴转移,视病毒的种类而定。至于由一个寄主身上转移到他一个寄主身上的方式,那常常是一个复杂的过程。要研究这个问题,可能就得进行大量实验,有时还会毫无结果。有些病毒在水中生活,有些在空气中生活。流行性感冒病毒浮悬在空气中的水滴里的时候,还可以保持其传染性达一小时之久。烟草斑纹病的病毒就是在空气内生活的一个例子。有时新寄主身上要有伤口,如动物身上的抓伤,植物根毛上的裂缝,病毒才能进去。有些病毒以昆虫为媒介,如靠吃玫瑰生活的蚜虫。大多数带病毒的昆虫都是在吸取花液时通过它们长长的吸嘴感染毒素的。番茄与观赏植物的病毒是靠牧草虫传播的,绵羊的狂跃病病毒和牲畜的红孢子病病毒,是由蜱传播的。斯密斯发现一种植物病,要有两种病毒才能引起这种疾病,其中一种由昆虫传播,另一种用别的方式传播。这里只举了几个例子说明其间的关系是怎样复杂而多样。 

  有许多动植物的疾病的传染方式还不清楚。口蹄疫向我们提出的问题尤其困难。某些传染病的一次流行与另一次流行之间似乎没有什么机械的联系。普通昆虫似乎不是媒介。病毒可以逆风传染,因此,病毒大概不是由风媒传染的。某些动物,如兔、鼠或猬有时可能是祸患的根源。也有人认为病毒是一种名叫欧椋的候鸟群,由大陆带到英国去的。有一事实是为佐证,那就是,这种候鸟不去的苏格兰,很少发生那些突如其来的流行病。 

  免疫 

  有关病毒的性质与其传播方式的实验,使人们能够更有效地防治和控制它们的危害,虽然某些早期的经验方法也是有成效的。本书第七章内已经讲过,天花病毒的移植和以后的牛痘的接种,是首先由杰斯提加以试验,后来又由詹纳加以更充分的研究的。人们常常发现病人得过一种传染病以后,就可以不再感染这种疾病。詹纳所用的牛痘或疫苗是一种微弱的天花病毒,可以引起一种和缓的局部病害,其所以能帮助身体抵抗病毒的感染,大概是由于形成了保护性的“抗体”(或“免疫体”),这种抗体和得过天花以后体内所产生的抗体一样。同样地,巴斯德利用感染狂犬病的家兔的脊髓制出了狂犬病的弱化病毒。如果将这些弱化病毒注射在刚得病的病人身上,在有毒的病毒还来不及分生的时候,病人身上就产生了防护性的抗体。 

  这种名叫“免疫”的复杂过程的性质还不很明白。1890年贝林(Behring),北里柴三郎(Kitasato)在打破伤风有免疫性的动物血清里发现了“抗毒素”,不久又通过观察了解到动物有制造抗毒素的能力,而且这是一个极普遍的现象。 

  化学家兼细菌学家欧立希(P.Ehrlich)对早期的免疫学有很多贡献。他在1891年证明植物蛋白,如蓖麻子和相思豆,注射在动物体内以后,都会促成特殊的抗毒素的产生。 

  十九世纪末,人们才认识到在细菌和许多蛋白性的物质注射体内后,身体的反应是产生一些新化合物,去中和注入体内的物质。这些出现在血液或组织里的新物质叫做“抗体”,而激发产生抗体的物质叫做“抗原”。 

  近来,兰德斯太纳(Landsteiner)又阐明了抗原的特殊性质的化学基础。他把重氮化的芳香胺与蛋白配合起来,制成了人造抗原,并且证明,这一特异性是重氮化胺造成的,而不是分子的蛋白部分造成的(1917)。1923年海德尔伯格(Heidelberger)与艾弗里(Avery)又前进一步。他们发现肺炎球菌的“可溶物”有抗原作用,按其化学结构来说是无氮的多糖。 

  抗原与抗体之间的反应还难于说明;至于免疫反应,有人说这是带相反电荷的胶体质点的组合,也有人说这是一种吸附现象。欧立希认为抗原与抗体按一定的比例而生化学变化。以后海德尔伯格与肯德尔的研究(1935)提供了有力的证据,说明抗原与抗体按倍数比例化合,因而海德尔伯格说这些化学反应很可能遵照经典的化学定律。 

  有些病毒疾病,如牲畜的口蹄疫,人的流行性感冒,可能是好几种不同品种的病毒造成的。对某一品种的病毒具有免疫性,也许并不能抵抗其他品种的病毒。在哥本哈根近来已经制出一种疫苗,人们希望它能够防治三种主要品种的口蹄疫病毒。 

  邓金(Dunkin)与莱德劳发现用甲醛使之弱化的犬瘟热的病毒仍然可以给人一些防疫能力,以后再注射活性病毒就可以证实这一点。另外还有一种双重注射法,即在动物体上,一迈注射活性病毒,另一边注射免疫血清。 

  海洋学 

  第七章内所讲的海洋学的研究有继续的发展,特别是鱼类的生态学。鱼类的环游在生物学上既值得研究,对水产的捕捞更有实际的意义。我们常常发现鱼类到一定的区域去产卵,通常是向上游游动,然后又分散到下游去觅食。例如北海的鳕鱼与板鱼的卵和鱼苗都在深海里,而鲑鱼则产卵在江河上游,幼鱼下游到海里去生活,等到成长以后再回到原来出生处去产卵,好象它们每个都具有很好的记忆力。 

  欧洲的鳗鱼,经施米特(Johannes Schmidt)证明,在淡水里度过其成年时代,然后迁居到几千英里外的马尾藻海的深水里去产卵。施米特还发现住在苏门答腊的另外四种鳗鱼,在西海岸的深海沟里产卵,因为在那里,海水具有适当的深度(五千米)与适当的盐度。 

  许多海鱼以硅藻和其他小生物为食物。我们在第七章讲过,这些小生物统称为浮游生物。我们研究一下浮游生物的聚集与飘荡,就可以了解食物的所在处,因而也是鱼类的所在处;自第七章写成以后,这方面的知识又积累了许多。哈尔的哈迪(A.C.Hardyof Hull)教授等人对于北海上空昆虫的飞荡也进行了不少的研究。 

  遗传学 

  自从细胞学和染色体方面的早期发现以来,科学家做了很多工作,帮助推进了遗传学,并开始影响植物和动物育种家的实用技术。 

  负载遗传因子或“基因”的染色体,在细胞里成对出现,而且在细胞分裂时每个染色体分裂为二,以便在两个新细胞核里再造成同样的对数。但是当生殖细胞形成时,每对染色体的两个成员却分离开来,各到每个新细胞去,这种过程叫做减数分裂或成熟分裂。生殖细胞里染色体的数目是基本的,被称为“单倍体”数目。在受精时,两个单倍体数目由于两个细胞核的结合而合在一起,这样造成的新个体,就染色体的数目来说,称为“二倍体”。但是,染色体也有可能倍增,即出现多倍性,因而在新的营养细胞里就可能出现两套以上的单倍体。这样,当细胞包含的染色体数目三倍于、四倍于或多倍于单倍体染色体数目时,就可能出现三倍体、四倍体或多倍体。例如多倍性就出现于小麦、燕麦与栽培的水果中。樱花是二倍体,梅是六倍体,苹果可能是稍微复杂的二倍体或三倍体。多倍体的情况对不孕的问题大有影响;如果多倍体在其营养细胞里有奇数的染色体,当生殖细胞形成时不能做均等的对分,那么,染色体分配方面的不规律现象就一定要发生,一般就要导致不孕。例如,在桃属植物中具有奇数染色体的多倍体,常不孕,因而不能结果,仅因其有观赏价值而被栽培。果实的许多 

  品种,如苹果的一个品种Cox’s Orange Pippin,各种桃与樱都不能自身受孕,需要附近有某种其他的品种才能结果。 

  在解决牵涉两个遗传因子和发育因子的性别决定问题方面,我们已经取得相当的进步。我们前面提到的对男女出生数差不多相等的解释,现在认为是正确的。在人身上和许多动物身上,雌性生殖细胞只具有雌性,而雄性生殖细胞,一半具雄性,一半具雌性。在另外一些动物身上,这种关系反转过来,雌性动物具有两类生殖细胞。决定性别的染色体,在有些情况下,已经在显微镜下认出来了。例如在研究遗传用得很多的果蝇身上,雄细胞里的性别染色体,可以看出有不相等的对数,其中一对是钩状的。 

  还有人,特别是克鲁(Crew)对性别决定方面的发育因子加以研究,他描述了家禽性别的颠倒。性激素在这里起了一定作用。我们不妨提一提同牡犊孪生而生殖器不完全的牝犊的例子——对这个未生犊的牧牛注射同胎的牡犊的性激素,就可以使它不孕。一种名叫后益(Bonellia)的海生物,其幼虫可以成长为雄性,也可以成为雌性,视它在发育时究竟是依附另一雌体还是依附海底而定。从化学上来说,和病毒一样,它们的染色体是核蛋白所构成的,而染色体内的基因,也象病毒一样,或者是自身生殖或者是劝诱细胞的其余部分生殖它们。 

  受到基因影响的代谢的确切的化学阶段,在某些例子里,已经明白。例如有人在鼠身上发现一种基因,是导致矮小的原因。矮小的老鼠缺少制造两种垂体激素的细胞,如果注射了这一种激素就能得到正常的发育。蒙克里夫(S.Moncrieff)小姐从生物化学的角度说明了造成花的颜色的35个基因的作用。造成白化病的基因可以使缺乏色素的动物的细胞里缺少色素酶。已经发现若干基因,有一些对机体有害,有一些阻止发育,还有一些造成早夭。例如有些植物就继承了抑制叶绿素形成的基因。 

  在这方面遗传学与生物化学相互为用。遗传学家帮助生物化学家把代谢的过程分为各种连续的阶段,生物化学家告诉遗传学家是什么基因在起作用。最后也许还能告诉他们这些基因究竟是什么。生物物理学家与生物化学家的职责在于尽量从物理学和化学的角度去描述生命
返回目录 上一页 下一页 回到顶部 0 2
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!