按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
提出的问题的方式,在陪审团审判的情况下,除非首先通过决定达到一个裁决,显然不可能应用“理论”;然而,这裁决必须在遵循因而应用一般法规的一部分的程序中才能作出。这种情况和基础陈述的情况类似。接受基础陈述是理论系统的应用的一部分;只有这个应用才使得这理论系统的进一步应用成为可能。
因此,客观科学的经验基础设有任何“绝对的”东西。科学不是建立在坚固的基岩上。可以说,科学理论的大胆结构耸立在沼泽之上。它就像树立在木桩上的建筑物,木桩从上面被打进沼泽中,但是没有到达任何自然的或“既定的”基底;假如我们停止下来不再把木桩打得更深一些,这不是因为我们已经达到了坚固的基础。我们只是在认为木桩至少暂时坚固得足以支持这个结构的时候停止下来。
追记(1972)
(1)我的术语“基础”具有反语的含意:这是一种不坚固的基础。(2)我采取一种实在论和客观主义的观点,我试图用批判的检验来代替作为“基础”的知觉。(3)我们的观察经验决不能不受检验,它们浸透着理论。(4)“基础陈述”是“检验陈述”:它们和所有语言一样,浸透着理论(即使允许形成如“现在这里红”这样的陈述的“现象”语言,也浸透着关于时间、空间和颜色的理论)。
科学发现的逻辑第六章 可检验度
第六章 可检验度
理论是或多或少可以严格地检验的;这就是说,或多或少可以容易地证伪的。它们的可检验性的程度对于理论的选择是有意义的。
有这一章里,我要通过比较理论的潜在证伪者类来比较它们不同的可检验度或可证伪度。这个考察完全独立于是否有可能在绝对意义上区别可证伪的和不可证伪的理论这一问题。人们的确可以说,这一章通过表明可证伪性是一个程度问题而把可证伪性的要求“相对化”。
31.纲领和例证
就如我们在第23节中看到的,假如至少存在一个同型基础陈述的非空类,而这些基础陈述为一个理论所禁止;就是说,假如这理论的潜在证伪者类不是空的,这个理论就是可证伪的。第23节中也说到,假如我们用一圆面积代表所有可能的基础陈述类,用圆的半径代表可能的事情,那么我们可以说,至少有一条半径——也许更确切地说,一条窄的扇形,它的宽度可以代表事件应是“可观察的”这一事实——必须是和这理论不相容的,是为这理论所排除的。因此,人们可以用不同宽度的扇形代表各种理论的潜在证伪者。按照这些理论排除的扇形宽度的大小,可以表明理论具有或多或少的潜在证伪者(暂时不谈这个“或多”“或少”是否可能精确测定的问题)。因此可以进一步说,假如一个理论的潜在证伪者类比另一个理论的潜在证伪者类“大”,那么第一个理论就有更多的机会为经验所反驳;因此,和第二个理论相比较,第一个理论可以说具有“更高的可证伪度”。这也就意味着,第一个理论关于经验世界比第二个理论说得更多,因为它排除的基础陈述类较大。虽然允许的陈述类因而变得更小,这并不影响我们的论证;因为我们已经看到,理论对于这个类并不断言任何东西。因此可以说,一个理论传达的经验信息量,或者它的经验内容,随着它的可证伪度的增加而增加。
现在我们设想:给我们一个理论,代表这理论禁止的基础陈述的扇形变得越来越宽,最后只留下一条窄的扇形代表着不为这理论所禁止的基础陈述(假如这理论是无矛盾的,就必定会有这样的扇形留下)。像这样的理论显然很容易证伪,因为它只允许经验世界有一个很小范围的可能性;因为它排除了几乎所有可设想的,即逻辑上可能的事件。它对经验世界断言如此之多。它的经验内容如此之大,以至可以说很少有逃脱被证伪的机会。
确切地说,理论科学的目的就在于获得在上述意义上易于证伪的理论。它的目的在于限制允许的事件到最小的范围,假如能够做到的话,小到这样的程度,任何进一步的限制就会导致这理论的实际的经验的证伪。假如我们能成功地获得这样一个理论,那么这个理论就能描述“我们的特殊世界’精确到理论描述所可能达到的程度;因为它会用理论科学所可能达到的最大的精确性,来从所有在逻辑上可能的经验世界类中挑选出“我们的经验”世界来。所有我们实际遭遇到和观察到的所有事件或偶发事件类,而且只有这些,才称作“被允许的”。
32.如何比较潜在证伪者类
潜在证伪者类是无限类。直觉的“较多”和“较少”,不要任何特殊保证条件就可应用于有限类,却不能同样地应用于无限类。
我们不容易躲开这个困难。即使我们为作比较而考虑被禁止的事件类,而不考虑被禁止的基础陈述或偶发事件,为了弄清其中哪一个含有“更多的”被禁止的事件,也不易躲开上述困难。因为某一经验理论所禁止的事件数也是无限的,这点可以从下列事实中看出:一个被禁止的事件和任何其他事件(不管它是否是被禁止的)的合取又是一个被禁止的事件。
我将考虑三种方法,即使在无限类的情况下,也给予这直觉的“较多”或“较少”一个精确的意义,以便找出其中哪一种可用来比较被禁止的事件类。
(1)类的基数(或幂)的概念。这个概念不能帮助我们解决我们的问题,因为很容易看出,潜在证伪者类对所有的理论有着同一的基数。
(2)维的概念。立方体以某种方式包含比直线更多的点,这个模糊的直观的观念,能够通过集合论的“维”概念以逻辑上无懈可击的术语清楚地表述。这种概念对点的类或集是按照在它们的元素之间的“邻域关系”的丰度加以区别的:更高维的集具有更丰富的领域关系。维的概念,使我们能比较“较高”和“较低”维的类,这里将被用来处理比较可检验度的问题。这是可能的,因为基础陈述通过和其他基础陈述的合取结合起来又产生基础陈述,这个新产生的基础陈述比它们的组成部分“具有更高的复合度”;而基础陈述的这个复合度可以和维的概念联系起来。不过,必须使用被允许的事件的复合而不是被禁止的事件的复合。理由是,一个理论禁止的事件可以有任何复合度;另一方面,某些被允许的陈述之所以被允许,只是因为它们的形式,或者更确切地说,因为它们的复合度太低,以致使它们不能和该理论相矛盾;可以利用这个事实来比较维。
(3)子类关系。设类α的所有元素也是类β的元素,因而α是β的子类(符号表示:αβ)。那么,或者β的所有元素也是α的元素——在这种情况下,我们说这两类具有相同的外延或者说它们是等同的——或者β的有些元素不属于a。在后一种情况下,不属于α的β的元素形成“余类”或称为α对于β的补类,α是β的一个真子类。子类关系和直觉的“较多”和“较少”非常对应,但是,它的不利之处是,这种关系只能用来比较两个互相包含的类。所以,假如两个潜在证伪者类不是互相包含,而是互相交叉,或者它们没有共同的元素,那么,相应的理论的可证伪度就不能用子类关系来比较;它们对于这种关系来说,是不可比的。
33.用子类关系比较可证伪度
暂时引进下列定义,以后在讨论理论的维数时将加以改进。
(1)说陈述x比陈述y“更高度可证伪”或“更可检验”,或用符号表示:Fsb(x)>Fsb(y),当且仅当x的潜在证伪者类包含作为一个真子类的y的潜在证伪者类。
(2)如果两个陈述x和y的潜在证伪者类同一,则它们有相同的可证伪度,即:Fsb(x)=Fab(y)。
(3)如果这两个陈述的潜在证伪者类并不作为真子类相互包含,则这两个陈述没有可比的可证伪度(Fsb(x)‖Fsb(y))。
假如(1)适用,总是有一个非空的补类。在全称陈述的情况下,这个补类必定是无限的。因此,两个(严格全称)理论不可能有这样的区别:其中一个理论禁止为另一个理论所允许的有限数量的单个偶发事件。
所有重言的和形而上学的陈述的潜在证伪者类都是空的。所以,按照(2),它们是同一的。(因为,空类是所有类的子类,因而也是空类的子类,所以,所有空类是同一的;这一点可以表示为:只存在一个空类。)如果我们用‘e’表示经验陈述,用‘t’或‘m’分别表示重言的或形而上学的陈述(例如,纯粹存在陈述),那么我们可以给重言的或形而上学的陈述一个零可证伪度,我们写作:Fsb(t)=Fsb(m)=0Fsb(e)>0。
自相矛盾的陈述(可以用(c)来表示),可以说是具有所有在逻辑上可能的基础陈述作为它的潜在证伪者类。这个意思就是说,任何陈述,就其可证伪度而言,都是和自相矛盾陈述可比的。我们得出:Fsb(c)>Fsb(e)>0。如果我们任意地设Fsb(c)=1,即任意地把1赋予某一目相矛盾的陈述的可证伪度,那么我们甚至可以用条件1>Fsb(e)>0来定义经验陈述e。按照这个公式,Fsb(e)总是在0和1之间的间隔内,不包括两端,即在以这两个数字为界的“开放间隔”内。由于把矛盾陈述和重言陈述(形而上学陈述也一样)排除在外,这个公式同时表达了无矛盾性的要求和可证伪性的要求。
34.子类关系的结构逻辑概率
我们已经用子类关系对两个陈述的可证伪度的比较下了定义。因此,可证伪度的比较就具有子类关系的所有结构性质。可比较性问题可以用一个图(图1)来说明。在这个图中,左边画的是某