按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
我们已经用子类关系对两个陈述的可证伪度的比较下了定义。因此,可证伪度的比较就具有子类关系的所有结构性质。可比较性问题可以用一个图(图1)来说明。在这个图中,左边画的是某些子类关系,右边画的是相应的可检验性关系。右边的阿拉伯数字对应于左边的罗马数字,某一罗马数字表示相应的阿拉伯数字所表示的那个陈述的潜在证伪者类。在这个图里表示可检验度的箭头,从具有更可检验的或更可证伪的陈述走向不那么可检验的陈述(因此它们相当准确地与可推导性箭头相当:参看第35节)。
从图中可以看出,各种子类序列可加以区别和追溯,例如,序列Ⅰ-Ⅱ-Ⅳ或Ⅰ-Ⅲ-Ⅴ;并且可以看出,引进新的中间类,可以使得这些序列更加“密集”。所有这些序列在这个特殊情况下都始于1和终于空类,因为空类被包含在每一个类里(在左面的图里,不可能画出空类,只是因为它是每一个类的子类,因此可以说必须出现在每一个地方)。如果我们选择类Ⅰ作为所有可能的基础陈述类,那么Ⅰ就变成矛盾陈述(c),而0(相当于空类)就可以表示重言陈述(t)。从Ⅰ到空类,或者从(c)到(t),可能通过各种途径;从右边的图中可以看出,某些途径可以互相交叉。因此我们可以说,这种关系的结构是一种网络结构(由箭头或子类关系排列成的“序列的网络”)。在节结点(例如,陈述4和5)网络部分地联结起来。只有在普遍类和空类里,对应于矛盾陈述c和重言陈述t;关系才完全联结起来。
是否可能把各种陈述的可证伪度排列在一个标尺上,即把按照它们的可证伪度排列的数字同各种陈述相关起来?显然,我们不可能用这种方法把所有的陈述排列起来,因为,如果能够的话,我们就会随意地使得那些不可比的陈述成为可比的。但是,我们完全可以从网络中挑选出某个序列,用数字来表示该序列陈述的次序。这样做时,我们必须给离矛盾陈述c较近的陈述的数字,比给离重言陈述t较近的陈述高。由于我们已经分别以0和1赋予重言陈述和矛盾陈述,我们就必须以真分数赋予所挑选的序列中的经验陈述。
然而,我并不真正想挑选出某一个序列来。赋予这序列中的陈述以数字也是完全任意的。不过,可能给以分数这一事实有很大意义,特别是因为它说明了在可证伪度和概率观念之间的联系。每当我们能比较两个陈述的可证伪度时,我们就能说,可证伪度较小的陈述由于它的逻辑形式,也是概率较大的,这种概率我称为“逻辑概率”。不可把它和在博奕论和统计学中使用的数值概率相混淆。陈述的逻辑概率和它的可证伪度是互补的:它随可证伪度的减少而增加。逻辑概率1相当于可证伪度0,反过来也是如此。具有更可检验度的陈述,即具有更高可证伪度的陈述,是在逻辑上更少可几的陈述;而可检验性较差的陈述是在逻辑上更可几的陈述。
在第72节中将看到,数值概率能和逻辑概率联结起来,因而也能和可证伪度联结起来。有可能把数值概率解释为适用于(从逻辑概率关系中挑选出来的)子系列的东西,可以在频率估计的基础上为这子系列规定一种测量系统。
这些对可证伪度比较的考察不仅适用于全称陈述或理论系统;它们也可推广应用于单称陈述。例如,它们适用于和初始条件合取的理论。在这种情况下,潜在证伪者类不可被误认为事件类——同型的基础陈述类——,因为它是偶发事件类(这点和将在第72节中分析的逻辑概率和数值概率之间的联系有某种关系)。
35.经验内容、衍推和可证伪度
在第31节中说到,我称之为陈述的经验内容的东西随着它的可证伪度而增加:陈述禁止越多,它对经验世界所说越多(参看第6节)。我称为“经验内容”的东西和比如,Carnap定义的“内容”概念有密切的关系,但不是同一的。对于后者,我使用术语“逻辑内容”,以与经验内容相区别。
我定义陈述p的经验内容为它的潜在证伪者类(参看第31节)。逻辑内容,借可推导性概念之助,被定义为从该陈述中可推导出的所有非重言陈述类(可以称作它的“后承类”)。所以,p的逻辑内容至少等于(即大于或等于)陈述q的逻辑内容,如q可从p中推导出来(符号表示:如‘p→q’)。如果可推导性是相互的(符号‘p←→q’),则说p和q有相同的内容如q可从p中推导出,而p不能从q中推导出,则q的后承类,一定是p的后承类的一个真子集;则p具有更大的后承类,并且从而具有更大的逻辑内容(或者逻辑力)。
我的经验内容的定义的一个推断是,两个陈述p和q的逻辑内容和经验内容的比较导致相同的结果,假如作比较的陈述不包含形而上学要素的话。因此我们要求:(a)有着相等的逻辑内容的两个陈述也必定具有相等的经验内容;(b)陈述p的逻辑内容大于陈述q的逻辑内容,也必定具有更大的经验内容,或者至少相等的经验内容;最后(c)假如陈述p的经验内容大于陈述q的经验内容,那么它的逻辑内容必定更大,否则就是不可比的。在(b)里必须加上“或者至少相等的经验内容”,这个限制因为p例如可能是q和某个纯粹存在陈述或其他某类形而上学陈述(我们必经赋以一定的逻辑内容)的合取;因为在这种情况下,p的经验内容将不大于q的经验内容。相应的考虑使得在(c)上加上“否则就是不可比的”这条限制成为必要。
因此,在比较可检验度或经验内容度时,我们通常——就是说,在纯粹经验陈述的情况下——达到和比较逻辑内容或可推导性关系时所达到的相同的结果。因此,可能把可证伪度的比较在很大程度上建立在可推导性关系的基础之上。两种关系都表明网络的形式,这网络在自相矛盾陈述和重言陈述里完全地联结起来(参看第34节)。这一点可以下列说法表示:自相矛盾陈述衍推每一个陈述,而重言陈述为每一个陈述所衍推。而且,我们已经看到,经验陈述可被描述成这样的陈述:它们的可证伪度落在以自相矛盾陈述的可证伪度为一端,以重言陈述的可证伪度为另一端的开放间隔中间。相同地,一般的综合陈述(包括非经验的陈述)也由于衍推关系,被放置在自相矛盾陈述和重言陈述之间的开放间隔中间。
因此,和所有非经验的(形而上学的)陈述都是“无意义的”实证主义命题相对应的就会是这样的命题:我在经验的陈述和综合的陈述之间,或在经验内容和逻辑内容之间所作的区别是多余的;因为所有综合陈述必须是经验的——即所有都是真正的而不只是伪陈述。但是,我认为,这种使用词的方式,虽然是可行的,并不能把问题澄清,反而把问题混淆了。
因此,我把对两个陈述的经验内容所作的比较,看作等同于对它们的可证伪度所作的比较。这就使得我们的方法论规则,即应该选择那些能经受最严格的检验的理论(参看第20节中反约定主义的规则),等同于这样的规则:选择具有最大可能的经验内容的理论。
36.普遍性水平和精确度
还有其他的方法论要求,可以还原为对最大可能的经验内容的要求。其中两个要求是突出的:对可能达到的最高水平(或程度)的普遍性的要求,和对可能达到的最高精确度的要求。
考虑到这些要求,我们来考察下列可设想的自然律:
p:所有在封闭轨道中运行的天体作圆形运动,或者更简洁地说,所有天体轨道是圆。
q:所有行星轨道是圆。
r:所有天体轨道是椭圆。
s:所有行星轨道是椭圆。
在这四个陈述中存在的可推导性关系在我的图中用箭头表示。从p可以得出所有其他的陈述,从q可以得出s,s也可从r得出;所以s可以从所有其他陈述得出。
从p移动到q,普遍性程度减少,q表达的比p少,因为行星轨道形成天体轨道的一个真子类。因此,p比q更易于被证伪:如q被证伪,p也被证伪,但是反之不然。从p移动到r,(谓语的)精确度减少:圆是椭圆的其子类;如r被证伪,p也被证伪,但是反之不然。相应的话可以应用到其他的移动上:从p移动到s,普遍性程度和精确度二者都减少;从q到s,精确度减少;而从r到s,普遍性程度减少。和较高程度的普遍性或精确度相对应的是较大的(逻辑的,或)经验的内容,因而有较高的可证伪度。
全称陈述和单称陈述二者都可以写成“全称条件陈述”的形式(或者经常称作“一般蕴涵”)。假如我们把我们的四个定律写成这个形式,那么我们也许能更容易和更准确地看到两个陈述的普遍性程度和精确度是如何进行比较的。
全称条件陈述(参看第14节注)可以写成下列形式:‘(x)(φx→fx)’,或者读为:“所有x的值,满足陈述函项φx的,也满足陈述函项fx”。我们的图中的陈述s产生下列例子:“(x)(x是一颗行星的轨道→x是一个椭圆)”的意思是:“不论x是什么,如果x是一颗行星的轨道,则x是一个椭圆”。设p和q是写成这种“标准”形式的两个陈述;那么我们可以说,p比q有着更大的普遍性,如果p的前件陈述函项(可以用‘φpx’来表示)是重言地蕴含于(或可合乎逻辑地推导于),但是不等同于q的相应的陈述函项(可以用‘φqx’来表示);或换言之,如果‘(x)φqx→φpx’是重言的(或逻辑上真的)。同样,我们说,p比q有着更大的精确性,如果‘(x)(fpx→fqx)’是重言的。即如果p的谓词(或者后件陈述函项)比q的谓词更窄,这就意味着:p的谓词衍推q的谓词。
这