按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
而没有终点。这两个坐标系只用一个钟就够了,因为时间的流逝对这两个坐标系是一样的。在观察开始的时候两根棒的起点是重合的。这个时候,一个质点的位置在两个坐标系中都是用同一个数目来表征的。这个质点的位置跟杆的刻度上某一点是重合的,这样我们就得到决定这质点位置的数字。但是假如两根杆相对作匀速运动,在运动了一些时间以后(譬如说,1秒钟之后),表示位置的数字就各不相同了。试看图52所示,静止在上面的杆上的一个质点,在上面的坐标系中决定它的位置的数字并不随时间而改变,但是在下面的杆上的相应数字却是随时间而改变的。我们不说“对应于质点的位置的数字”,而常常简单地说成“质点的坐标”。虽则后面这句话听来似乎很深奥,但从图上看来却是正确的,而且所表示的意思是极简单的。质点在下面的坐标系中的坐标,等于它在上面的坐标系中的坐标加上上面的坐标系的起点在下面的坐标系中的坐标。重要的是,假如我们知道质点在一个坐标系中的位置,便能计算它在另一个坐标系中的位置。为了这个目的,我们必须知道在每个时刻这两个坐标系的相对位置。其实上面这些话,是很简单的,如果不是因为在后面要用它,还不值得作这样详细的讨论。
这里我们要注意一下决定一个质点的位置和决定一个事件的时间的差别。每一个观察者都有他自己的杆作为他的坐标系,但是他们却共用一只钟。时间有点像“绝对的”,它对于所有的坐标系中的所有观察者都是同样地流逝的。
现在再举一个例子。有一个人以3公里每小时的速度在一艘大船的甲板上散步。这是他相对于船的速度,或者换句话说,是他相对于严密地关联于船的坐标系的速度。假使船相对于岸的速度是30公里每小时,而人与船的匀速直线运动的方向又相同,则这个散步的人,相对于一个岸上的观察者的速度是33公里每小时,或者相对于船是3公里每小时。我们可以把这个情况说得更抽象一些:一个质点相对于下面的坐标系的速度,等于它相对于上面的坐标系的速度,加上或减去(究竟是加或减,得看速度的方向是相同还是相反)上面的坐标系相对于下面的坐标系的速度(图53)。因此假如我们知道两个坐标系的相对速度,我们不仅可以把一个坐标系的位置转换到另一个坐标系的位置,而且可以把一个坐标系的速度转换到另一个坐标系的速度。位置、坐标以及速度不同的坐标系中有不相同的几种量,然而都是以某种固定的关系相互联系着的,在这个例子中,所用的就是简单的转换定律。
可是有些量在两个坐标系中都是相同的,所以它们用不到转换定律。例如在上面的杆上不是取定一点而是取定两点,并考察它们之间的距离。这个距离便是两点的坐标之差。为了要找出这两点对于不同的坐标系的位置,我们必须应用转换定律。但是在构图的过程中,两个位置之间的坐标之差由于不同坐标系所产生的影响已相互抵消了,这在图54中可以很明显地看到。我们得先加上,然后减去两个坐标系的起点之间的距离。因此两点之间的距离是不变的,也就是说它与坐标的选择无关。
其次一个与坐标系无关的量的例子便是速度的改变,这是我们在力学中已很熟悉的一个概念。假如从两个坐标系去观察一个沿直线运动的质点。对每一个坐标系中的观察者来说它的速度的改变等于两个速度之差,而两个坐标之间的匀速相对运动所产生的影响在计算两者之差的过程中消去了,因此速度的改变是一个不变量。但是有一个条件,即两个坐标系的相对运动必须是匀速直线的。不然,在每个坐标系中速度的改变也会不同,这种差异是由于代表我们坐标系的两根杆的相对运动速度改变所致。
现在举最后一个例!设有两个质点,作用于其间的力只与距离有关。在匀速直线运动的情况下,距离是不变量,因而力也是不变量。因此把力和速度的改变联系起来的牛顿定律,在两个坐标系中都是有效的。我们又一次得到了一个为日常经验所确认的结论:假如力学定律在一个坐标系中是有效的,则它们在对应于这一个坐标系作匀速直线运动的一切坐标系中都是有效的。当然,我们的例子是很简单的,是一种直线运动的例子,其中的坐标系可以用一根坚硬的杆来代表。但是我们的结论是普遍地有效的,可以概括为下列几条:
1.我们不知道有什么法则可以找出一个惯性系。可是,如果假定出一个来,我们便可以找到无数个,因为所有互相作匀速直线运动的坐标系,只要其中有一个是惯性系,则它们全部是惯性系。
2.与一个事件相对应的时间,在一切坐标系中都相同。但坐标与速度却都不相同,它们依照转换定律而变化。
3.虽然坐标与速度由一个坐标系过渡到另一个坐标系时是改变的,但是,力与速度的改变对于转换定律都是不变的,因而所有的力学定律对转换定律也是不变的。
我们把上面所表述的坐标与速度的转换定律称为经典力学的转换定律,或简称为经典转换。
以太与运动
伽利略相对性原理用在力学现象中是有效的。在所有作相对运动的惯性系中都可以应用同样的力学定律。对于非力学的现象,尤其是对于场的概念居于重要地位的那些现象,也都能应用这个原理吗?与这个问题有关的一切问题,立刻把我们带到相对论的出发点。
我们记得在真空中,或者换句话说,在以太中光的速度是3.0×105公里每秒,而光就是在以太中传播的电磁波。电磁场储藏着能,这种能一旦从它的源辐射出去以后,便独立存在。虽然我们已充分感觉到以太在力学上的结构有许多困难,但目前我们还将继续承认以太是传播电磁波的介质,因而也同样承认以太是传播光波的介质。
设想我们坐在一个被封闭的房间里,这个房间与外界完全隔绝,空气既不能进去也不能出来。如果我们静坐着说起话来,从物理学的观点来说,我们在创造声波,这种波从静止的声源以空气中的声速传播。假如口与耳之间没有空气或旁的介质,我们便听不到声音。实验表明,如果没有风,并且对于我们所选择的坐标系来说空气是静止的,那么声音在空气中向各个方向的传播速度都是一样的。
现在我们想象房间穿过空中作匀速直线运动。一个在外面的人可以透过运动着的房间(假如你高兴,说成火车也可以)的玻璃墙看到里面所发生的一切。室外的人可以根据室内的观察者的测量结果,推算出声音对于与他的环境相联系的一个坐标系的速度,而房间就是相对于这一个坐标系作运动的。这里又是前面那个老的、讨论了很多次的问题,即假使知道了一样东西在一个坐标系中的速度,如何决定它在另一个坐标系中的速度。
房内的观察者宣称:在我看来,声音在各个方向的速度都是一样的。
外面的观察者宣称:在运动着的房间内传播的而用我的坐标系来确定的声音的速度,在各个方向并不相等。在房间运动的方向上的声速比标准声速要大些,在相反的方向上则比较小些。
这些结论都是从经典转换推出来的,而且可以用实验来确证。房间把它里面的物质介质,即声音赖以传播的空气带着运动,因此声速对于里面和外面的观察者是不同的。
我们还可以根据把声看作是在物质介质中传播的波的理论从而推出另外的结论来。如果我们想要听不到演说者的声音,我们可以这样做(虽然这不是一种最简单的方法):我们相对于演说者周围的空气以大于声速的速度向前奔跑,于是发出的声波永远也不会到达我们的耳鼓了。反之,假使我们忘掉了一句永远不再重复的重要的话,我们必须以大于声速的速度,赶上早已过去了的声波去听到那句话。这两个例子并没有什么不合理的地方,不过所难的是在这两种情况中我们都必须以约40O米每秒的速度奔跑,但是我们可以想象,将来技术的进一步发展,这样的速度是可能实现的。从大炮里发射出来的炮弹的速度实际上比声速大,因而骑在这样一个炮弹上的人便永远听不到发射炮弹的声音。
所有这些例子都纳粹是力学性质的,我们现在可以提出一个非常重要的问题了:关于我们刚才对声波所说的一切情况是否可以同样应用于光波的情况呢?伽利略相对性原理和经典转换是否在应用于力学现象的同时也可以用于光的现象和电的现象呢?假如对于这些问题简单地答复一个“是”或“否”,而不深究它们的意义,那是很危险的。
在相对于外面观察者作匀速直线运动的房间中的声波的例子中,插入下面两段话对于我们的结论是非常重要的:
运动着的房间带着传播声波的空气一起运动。
在相对作匀速直线运动的两个坐标系中所观察到的速度是用经典转换联系起来的。
光的相应问题必须提得稍微不同一点:室内的观察者不再是说话,而是向各个方向发出光信号或光波。我们进一步假定发出信号的光源是永远静止在房间里的。光波在以太中运动正如声波在空气中运动一样。
房间是否带着以太一起运动,像带着空气一起运动那样呢?因为我们没有以太的力学结构,所以很难答复这个问题。假如房间是封闭的,里面的空气便不得不随着它运动。假如想象以太也如此,很明显,这是毫无意义的,因为所有的物质都浸在它里面,而且它是穿透到任何地方去的。任何的门都关不住以太。所谓“运动着的房间”,现在的意思只是指光源跟它严密地相联系的运动着的一个坐标系而已。可是我们并非绝对不能想象房间的运动把光源和以太带着一起运动,