按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
现在我们便使这大球在转轴上旋转起来。这时发生了什么事?我们会看到在转轴的P点附近的星在大球旋转时也都绕着P点转。在KN圈上的星绕到P点下面的时候会擦到圆盘的边。离P点更远的星就会沉落到盘底下去,或远或近,依它们离P点的远近而定。靠近EF圈上的星正在PQ之间,它们的旋转路程一半在盘上一半在盘下。最后,在ST圈内的星就永不能升到盘上面来,因此也永不能为我们所见。
我们眼中的天球就正是这样一个球,不过加上无限大的广袤而已。在我们看起来,它也是把天上的一点当成转轴不停地绕着旋转,差不多一日一周,太阳、月亮、星辰也都随着它旋转。星辰都保留着它们自己相互间的位置,就好像是钉扎在旋转的天球中一样。这便是说,如果我们在夜间任何一小时内给它们拍摄一张照片,那么在其他任何小时内它们也还是照片中的状况,只要我们能把它放在准确的方位上。
转轴的P点叫做“天球北极”(north celestial pole)。在北纬中部的居民(我们中的大部分都是)眼中,它便在北天上,差不多正当天顶与北方地平线的正中。我们住的地方愈向南去,北极便愈靠近地平线,它离地平线的高度正相当于观察者所在地的纬度。离北极很近的一颗星便是北极星,我们以后要讲怎样去寻找它。在平常的观测中,北极星似乎从来不移动。其实它离北极只有一度多一点,这差别我们现在可以不管它。
正对着天球北极的是“天球南极”(south celestial pole),它在地平线下,与北极离地平线的距离一样远。
很明显的,在我们的纬度上所看见的周日运动是倾斜的。当太阳从东方出来的时候,它看起来并不是从地平线上一直升起来的,它的路线是倾向着南方与地平线成一个或大或小的锐角。因此在它沉没的时候,它对于地平线也还是取着倾斜的路线。
现在我们再想象一只极大的圆规来,它要大得足以接着天界。我们把它的一只脚定在天球北极,再把另一只脚接上北极下面的地平线。让指定北极的那只脚不动,而用另一只脚在天球上画出一个大圆圈来。这大圆圈的下面正好和地平相连,而它的上面,在我们的北纬地区看起来,最高点已差不多接近天顶了。这大圆圈里的星是永远不落的,它们看来只是每日环绕北极转动一周。因此,这圆圈便叫做“恒显圈”(circle of perpetual apparition)。
星辰的每日视转动(2)
在这圈外更向南的星都有升有落,可是越往南去的星每天在地平线上的路程就越少,直到最南方的一点上,星星只在地平线上略微一露面就隐退了。
更往南去的星,在我们的纬度上看起来,就根本不出现了。那些星都在一个“恒隐圈”(circle of perpetual occultation)中。恒隐圈以天球南极为中心,正像恒显圈以天球北极为中心一样。
图2是北方所见的恒显圈内的北天主要星座。把适当的月份转到顶上来,我们便可看到当月每日下午八时前后的北天星座了。图中也标出了找北极星的方法,就是利用大熊座中7颗星(即北斗七星)中的两颗“指极星”(Pointers)的延长线,那便是对着北极的方向。
现在我们来变换一下我们的纬度看看会有什么变化。如果我们是向赤道方向旅行,我们的地平方向也改变了,而且在我们的途中可以看到北极星渐渐地往下沉落得越来越低。我们接近了赤道,它也接近了地平,我们到了赤道,它也到了地平线上。当然,恒显圈也随之越来越小,我们到了赤道时,恒显圈也就完全消失了,南北方向地平线上各有天的一极。那里的周日运动就跟我们此地所见的完全不同了。太阳、月亮、星辰,升起来时就一直向上。如果有颗星恰好在正东方升起,它必定会正好经过天顶;从偏南些的天上升起的星一定从天顶南边过去;而偏北的星也自然从天顶北边过去了。
我们再继续往南走,到了南半球上,我们又看到太阳虽然从东方出来,却大致是从天顶的北面横过中天了。南北两半球上的最大不同点便是:太阳既然在天顶的北边过中天,它的视运动就不像我们这儿一样跟钟表上时针方向一致,却恰好与之相反了。在南纬中部,我们所熟悉的北天星座都永远在地平线下,而南方却出现了新的星座。有些南天星座是颇以美观著名的,例如南十字座。其实说来,大家常以为南天比北天更加美丽而且包含更多的星。可是这种见解现在已证明是不正确的了。很仔细地研究计算这些星辰后,我们知道南天和北天的星数差不多是相等的。大概我们刚才说的这种印象是由于南天相对晴朗些也未可知。南非洲以及南美洲的空气中确实比我们北方较少烟雾,这也许是因为那儿气候比较干燥的缘故。
我们刚才说的北天星辰绕天极的周日运动也同样可以适用于南天。但是南天并没有南极星,因此也没有方法找出天球南极来。南极附近有一些小星,可是也并不比天上别处更密。当然南半球上也有它的恒显圈,而且我们越往南去,圈也越来越大。这便是说在南极周围有一圆圈中的星辰永远不落,却绕着南极转,看起来的方向也正和北天上的相反。因此,也还有一个恒隐圈,里面包括了北极附近的星座,而这些星座却是在我们的纬度上永远不落的。一旦我们过了南纬20度,就绝看不见小熊座的任何部分。再往南去,大熊座也只在地平线上或多或少的露出一部分了。
如果我们再继续向南极旅行,我们便再也看不到星辰的升落了。那些星都平行地绕着天上一点转动,中心南极便在天顶。当然这种情形在北极也是一样的。
时间与经度的关系
我们都知道,一条由北而南通过某地的线叫做该地的子午圈。更确切些说,地球表面上的子午圈便是由北极至南极之间所作的半圆。这种半圆从北极向各方散开,因此我们可以把这线画到任何地方去。格林威治皇家天文台(Royal Obser-vatory at Greenwich)的子午圈是当今国际公认的经度计算的起点,而欧美大部分的钟表时间也是依此标准而定的。
相对于某地地上子午圈的还有天上的子午圈(即地上的子午圈在天球上的投影),从天的北极起始通过天顶,在最南一点与地平相交,再往南直达南极。既然地球绕着轴旋转,它也就把地上的跟天上的子午圈一起连带着旋转,因此,天上的子午圈在一日之内经过整个天球。在我们看来的现象却是天球上的每一点在一日之内都要经过子午圈。
中午便是太阳通过子午圈的时刻。在现代计时工具出现以前,大家都依照太阳定钟表。可是因为黄道的倾斜角与地球绕日轨道的偏心率,太阳每次经过同一条子午圈前后所间隔的时间是不完全相等的。结果,假如钟的时间准确,太阳便有时在正午12点钟以前,有时又在以后通过子午圈。如果明白了这个道理,便不难区分视时(apparent time)与平时(mean time)了。视时是依太阳而定的每日长短不等的时间;平时是依钟表定的每日之内完全不差的时间。两者之间的差别便叫做时差(equation of time)。它们相差最多的时候约发生在每年11月初和2月中。11月初,太阳在12点前16分钟经过子午圈;在2月中,却又在12点以后14分钟经过子午圈。
为了定出平时,天文学家想象出一个平太阳(mean sun)的概念。平太阳是永远顺着天球赤道运行,因此每次经过同一子午圈间隔的时间完全一致,也因此有时在真太阳之前,有时又落后了。这个想象出的平太阳就可以确定每天的时间。如果不管真实情形,只按照眼见的景象说起来也许更为明了,那么我们先想象地球是静止不动的,平太阳绕着地球转,陆续经过各地的子午圈。这样我们便要想象着“中午”永远环绕世界周游了。在我们的纬度上,它的速度只不过是每秒300米左右;这就是说,假如我们所在的地方正是中午,1秒钟后,向西300米的地方便是中午,再过1秒钟又西移300米,依此类推下去,过了24小时后中午又回到我们这儿来了。这种情形的最显著的结果便是:任何两个在不同子午圈上的人不可能处在相同的时间。我们向西方旅行,便要不停地觉得我们的表比当地的表走得快,反之,向东方旅行,我们的表又太慢了。这种不同的时间便叫做“地方时”(local time)。
标准时
从前这种地方时的应用曾引起旅行者的很大的不便。每条铁路都有自己的子午圈,依照自己的时间开车,而旅客因为不知道自己的钟表与铁路时间的关系,便常常容易误了火车。直到1883年,我们现在的标准时制度才成立。在这种制度下,每15度(就是说太阳在每一小时内经过的地方)有一标准子午圈。中午经过标准子午圈的时候,两旁7.5度之内也都算是正午。这便叫做“标准时”(stan-dard time)。指示这些地带的经度也都以通过格林威治(天文台)的子午圈为起点计算。费城(Philadelphia)约在格林威治西75度或者说西五区,更确切些说是约5时1分。于是美国东部诸州的标准子午圈便在这地方(费城)东面一点。平正午(mean noon)经过这子午圈时,西面一直到俄亥俄(Ohio)都要算是正午12点的。1小时后,12点便在密西西比河流域。再过1小时,12