友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

数理化通俗演义-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



立。这时你来入伙实在冒险,也许我们这些人费尽九牛二虎之力,捞的却是一个水中的月亮。”

  “我直觉地感到量子理论是很有希望的,我决心献出全部精力弄清这神秘量子的真正本质。”

  正是:

  金衣玉食何足贵?过眼烟云不多时。

  聪明贵胄有奇志,不爱虚荣爱真知。

  再说德布罗意刚下定决心开始对理论物理的研究,不久,第一次世界大战就爆发了,他便服兵役上了前线,直到1922年他才重回哥哥的实验室继续中断许久的研究。渐渐地他生成了一个大胆的思想:光波是粒子,那么粒子是不是波呢?就是说光的波粒二象性是不是可以推广到电子这类的粒子呢?就像当年法拉第由电变磁推想磁变电一样,德布罗意思路一开立即拓出一片新的天地。1923年他接连发表三篇论文,提出“物质波”的新概念,他坚信大至一个行星,一块石头,小至一粒灰尘,一个电子,都能生成物质波。物质波有其独特之处,它能在真空中传播不要介质,因此不是机械波。但它又可以由不带电的物体运动生成,因此它又不是电磁波。他还运用爱因斯坦的相对论,推出了物质波的波长公式λ=h/mu。即波长与粒子的质量和速度的乘积成反比。他还算出中等速度的电子的波长应相当于X射线的波长。

  第二年,1924年,德布罗意将自己的这个新思想写成一篇论文《关于量子理论的研究》去考博士学位。可以说是当时物理学界一个独一无二的新观点,许多人看了文章都摇头,眼看德布罗意的博士学位是毫无希望了。这时他的老师朗之万出来说了一句话:“我虽然很难相信德布罗意的这种观点,但是他的论文实在是才华横溢,因此我还是同意授予他博士学位。”他总算勉强通过答辩。再说朗之万对这件事总是不放心,也不知他的这个学生到底该算是个才子还是个疯子,便将论文稿寄给爱因斯坦审阅。爱因斯坦真不愧为一个理论物理大师,他刚读完文章就拍案叫绝,并立即向物理学界的几个大人物写信,吁请对这个新思想给予关注:“请读一读这篇论文吧,这可能是一个疯子写的,但只有疯子才有这种胆量。它的内容很充实。看来粒子的每一个运动都伴随着一个波场,这个波场的物理性质虽然我们现在还不清楚,但是原则上应该能够观察到。德布罗意干了一件大事,另一个物理世界的那幅巨大的帷幕,已经被轻轻地掀开了一角。”

  花开两朵,各表一枝。在物理学中同一个题目常常是理论和实验双管齐下,稿纸上的推算和实验室里的测试刀枪并举,经过一场激战,堡垒才宣告攻克。

  事有凑巧,就在爱因斯坦这话刚说过不久,和法国隔洋相望的美国出了一件事。在纽约的贝尔电话实验室里有一个研究人员叫戴维逊,长期以来他和助手革末在做电子轰击金属的实验。这天二人正聚精会神地观察,忽然一声巨响,一只盛放液态空气的瓶子倒地炸裂。这下可糟了,实验用的金属靶子是置于真空条件下的,现在液态空气立即气化,弥漫全室,钻进了真空系统,那块当靶子的钝锌板立即就被氧化。他们只好自认倒霉,连夜加班,将这块锌板换下来又是加热,又是洗刷,费力地将锌板表面的氧化膜去乾净,再装回真空容器里。

  第二天,戴维逊和革末又来到实验室,他们将仪器安置好后又开始了那个不知重复了多少次的实验。戴维逊板动开关将电流直向锌板射去,一边喊革末调整一下锌靶的角度。革未将锌靶轻轻转了一个角度,戴维逊却吃惊地喊道:“见鬼,今天怎么连电子也学会与我绕弯子!——革末,再将锌靶转个角度。”

  “先生,您发现了什么?”革末一边转动锌靶,一边问道。

  “您自己来看,莫非是我的眼睛出了毛病?”戴维逊说着和革末换了个位置。

  “哎呀,电子束怎么不稳定了呢?”

  各位读者,你道他们发现了什么?原来随着锌板的取向变化,电子束的强度也在变化,这种现象很像一束波绕过障碍物时发生的衍射那样,但是电子明明是粒子啊,它怎么能有波的性质呢?戴维逊师徒两人又将这个实验重复了多遍,仍然如此,他们一下跌入闷葫芦里。要说电子也是波,这简直就好像说人头上长角一样不可思议。他们就这样百思不得其解,在闷葫芦里一直闷了两年。

  两年后的夏天,戴维逊访问英国,遇到著名的物理学家玻恩。两人刚坐好,戴维逊就迫不及待,将那个在肚子里憋了两年的问题提了出来。玻恩不听犹可,一听戴维逊如此这般地描述,便喜不自禁,也不顾是与客人初次见面,突然在对方肩上拍了一把,大声说道:“朋友,您已经撞开了上帝的大门。”

  “难道电子真的也是一种波吗?”

  “是的,光有波粒二象性,一切物质微粒也有波粒二象性,电子也不例外。这正是欧洲大陆上近年来最新的理论。可惜这个假设还从没有人来验证,想不到证据却操在你的手里。”

  “看来我们美国与这里远隔重洋,真是消息闭塞。我要是早一点来访问,何至于苦闷两年呢?快请您告诉我是谁提出了这个伟大的假设?”

  “就是那个法国人德布罗意,这个人本是学文科的,半路出家投身物理。但也正因此他没有我们同行中惯有的旧框子,所以倒捷足先登。他不但提出假设,还推出公式,能具体地求出粒子的波长呢。他的论文发表在法国科学院会议周报上和英国的《哲学杂志》上,您可以仔细研究一下。”

  这两个科学家越谈越有劲,而戴维逊心里已在悄悄地说:只今天这一席谈话我就不虚此行了。拜会过玻恩之后戴维逊已无心再到哪里转了,便草草结束了这次访问。他回到美国后,重做了两年前的实验,果然与德布罗意的预言和计算完全一致。原来两年前的那次液态气瓶爆裂帮了他的大忙。他和革末对锌板加热、洗刷后,锌板就变成了单晶体,而任何一种波经过晶体,都会生成强度周期性的变化现象。他们真是因祸得福。同时还有另一名英国物理学家小汤姆生,则从另一条途径获得一张电子衍射的照片。德布罗意理论从此得到了有力的证实。德氏因此获得1929年的诺贝尔物理学奖金,而戴维逊和小汤姆生则共同分享了1937年的诺贝尔物理学奖金。读者或许要问:这个小汤姆生与我们前面提到的老汤姆生是何关系?原来他们正是一父一子,老子发现了电子,儿子又证实了电子是波,父子二人在物理学方面做着接力研究,一时在科学史上传为美谈。

  各位读者,容作者在这里插几句闲话。德布罗意和戴维逊等人证明电子是波,好像实在抽象,我们这里只举一个例子就可知这个理论的威力。我们平常所以能看到东西是靠光,那是平常的光作用于物体,再反射到我们眼里。光学显微镜所能显示的物体微小细部的能力,因所使用的光的波长小到什么程度而定。因此,放大能力最强的显微镜便使用紫外光。这好比我们撬一块大石头,要用一根粗木棍,而剔牙时却只能用一根细牙签了。好了,现在证明电子和光一样也是波,而且它的波长比紫外光要小几千倍,何不用来代替光显示物体呢?果然,人们把电子束集中在一个焦点上,射过物体,便在萤光屏上得到一个放大的图像。1932年世界上发明第一架电子显微镜。1938年美国人制成了一架能放大三万倍的电子显微镜,而当时最大的光学显微镜也只能放大2500倍,现在人们使用的电子显微镜已经能放大到二十万倍以上。

  好了,闲话暂且不提,我们还回到德布罗意的故事上来。这德布罗意假设一提出,当时大部分物理学家都抱着试试看的态度。其中有一个奥地利物理学家薛定锷(1887-1961)1926年正在苏黎世大学(就是爱因斯坦曾工作过的那所大学)任教授。有人建议他把这个假设拿到学生中去讨论,他很不以为然,只是出于礼貌,才勉强答应下来。可是当他为讨论准备介绍报告时,立即被德布罗意的思想抓住了。现在我们又要看到科学史上一次惊人的相似。这薛定锷的特长是数学很好,于是他就像牛顿总结伽利略、开普勒的成果,麦克斯韦总结法拉第的成果一样,立即用数学公式将德布罗意的思想又提高了一层,得出一个著名的“薛定锷方程”。这个方程一公布立即震惊物理界,它就像牛顿方程解释宏观世界一样,能准确地解释微观世界。它清楚地证明原子的能量是量子化的;电子运动在多条轨道上,跃迁轨道时就以光的形式放出或吸收能量;电子在核外运动有着确定的角度分布。这样,他用数学形式辟出一个量子力学新体系。同时还有一个德国物理学家海森堡从另一角度研究量子力学,提出一个矩阵力学体系。薛定锷用的是微积分形式,海森堡用的是代数形式,物理学早已不是人们可以眼看手摸的形状、温度,它现在要用更抽象的概念才能作出更准确的表述了。正像我们绘画时为了更准确地传神,白描反而不够,而要用写意。

  再说这个海森堡(1901-1976)越研究越深。最后,他发现我们虽然可以在宏观世界里准确地观察任何现象,而在微观世界里简直作不到这一点。这好比我们用一支粗大的测海水温度的温度计去测一杯咖啡的热量,温度计一放进去,同时就要吸收掉不少热量,所以我们根本无法测准杯子里原来的温度。而作为原子内的能量如此之小,任我们制成怎样精确的仪器,也会对它有所干扰。观察者及其仪器永是被观察现象的一个不可分割的部分,一个孤立自在的物理现象是永不存在的。这便是“测不准原理”。我们生活在这个物理世界,身在此山中,难识庐山真面目。

  量子理论现在越发展越深,当初的一个幼芽,�
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!