友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

24_明史-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!




  第六段二百七十零分二零

  置第一段日平差,四百七十六分二十五秒,为凡平积。以第二段二差一分三十八秒,去减第一段一差十八分四十五秒,余三十七分零七秒,不凡平积差。另置第一段二差一分三十八秒,折半得六十九秒,为凡立积差。以凡平积差三十七分零七秒,加入凡平积四百七十六分二十五秒,共得五百一十三分三十二秒,为定差。

  以凡立积差六十九秒,去减凡平积差三十七分零七秒,余三十六分三十八秒为实,以段日一十四日八十二刻为法除之,得二分四十六秒为平差。置凡立积差六十九秒为实,以段日为法除二次,得三十一微,为立差。

  夏至前后缩初盈末限,九十三日七十一刻,就整。离为六段,每段各得一十五日六十二刻。就整。各段实测日躔度数,与平行相较,以为积差。

  积日积差

  第一段一十五日六二七千零五十八分九九零四

  第二段三十一日二四一万二千九百七十八六五八

  第三段四十六日八六一万七千六百九十六六七九

  第四段六十二日四八二万万一千一百五十零七二九六

  第五段七十八日一零二万三千二百七十八四八六

  第六段九十三日七二二万四千零百一十七六二四四

  推日平差、一差、二差术,与盈初缩末同。

  日平差一差二差

  第一段四百五十一分九二三十六分四七一分三三

  第二段四百一十五分四五三十七分八零一分三三

  第三段三百七十七分六五三十九分一二一分三三

  第四段三百三十八分五二四十零分四六一分三三

  第五段二百九十八分零六四十一分七九

  第六段二百五十六分二七

  置第一段日平差,四百五十一分九十二秒,为凡平积。以第一段二差一分三十三秒,去减第一段一差三十六分四十七秒,余三十一分一十四秒,为凡平积差。另置第一段二差一分三十三秒折半,得六十六秒五十微,为凡立积差。以凡平积差三十五分一十四秒,加入凡平积四百五十一分九十二秒,共四百八十七分零六秒,为定差。以凡『立积差六十六秒五十微,去减凡平差三十五分一十四秒,余三十四分四十七秒五十微为实,以段日一十五日六二为法除之,得二分二十一秒,为平差。置凡立积差六十六秒五十微为实,以段日为法,除二次,得二十七微,为立差。

  凡求盈缩,以入历初末日乘立差,得数以加平差,再以初末日乘之,得数以减定差,余数以初末日乘之,为盈缩积。

  凡盈历以八十日九零九二二五为限,缩历以九十三日七一二零二五为限。在其限已下为初,以上转减半岁周馀不末。盈初是人冬至后顺推,缩末是从冬至前逆溯,其距冬至同,故其盈积同。缩初是从夏至后顺推,盈末是从夏至前逆溯,其距夏至同,故其缩积同。

  表格略

  ▲盈缩招差图说

  盈缩招生,本为一象限之法。如盈历则以八十八日九十一刻为象限,缩历则以九十三日七十一刻为象限。今止作九限者,举此为例也。其空格九行定差本数,为实也。其斜绵以上平差立差之数,为法也。斜绵以下空格之定差,乃余实也。假如定差为一万,平差为一百,立差为单一。今求九限法,以九限乘定差得九万为实。另置平差,以九限乘二次,得八千一百。置立差,以九限乘三次,得七百二十九。并两数得八百二十九为法。以法减实,余八万一千一百七十一,为九限积。又法,以九限乘平差行九百,又以九限乘立差二次得八十一,并两数得九进八十一为法,定差一万为实,以法减实,余矣千零一十九,即九限末位所书之定差也。于是瑞以九限乘余实,得八万一千一百七十一,为九限积,与前所不所得不同。盖前法是先乘后减,又法是先减后乘,其理一也。

  按《授时历》于七政盈缩,并以垛积招差立算,其污七巧合天行,与西人用小轮推步之法,殊途同归。然世所传《九章》诸书,不载其术,《历草》载其术,而不言其故。宣城梅文鼎为之图解,于平差、立差之理,垛积之法,皆有以发明其所以然。有专书行于世,不能备录,谨录《招生图说》,以明立法之大意云。

  盈初缩末置立差三十一微,以六因之,得一秒八十六微,为加分立差。置平差二分四十六秒,倍之,得四分九十二秒,加入加分立差,得四分九十二秒八十六微,为平立合差。

  置定差五百一十三分三十二秒,内减平差二分四十六秒,再减立差三十一微,余五百一十零分八十五秒六十九微,为加分。

  缩初盈末 置立差二十七微,以六因之,得一秒六十二微,为加分立差。置平差二分二十一秒,倍之,得四分四十二秒,加入加分立差,得四分四十三秒六十二微,为平立合差。

  置定差四百八十七分零六秒,内减平差二分二十一秒,再减立差二十七微,余四百八十四分八十四秒七十三微,为加分。

  已上所推,皆初日之数。其推次日,皆以加分立差,累加平立合差,为次日平立合差。以平立合差减其日加分,为次日加分,盈缩并同。其加分累积之,即盈缩积,其数并见立成。

  ▲太阴迟疾平立三差之原

  太阴转周二十七日五十五刻四六。测分四象,象各七段,四象二十八段,每段十二限,每象八十四限,凡三百三十六限,而四象一周。以四象为法,除转周日,得每象六日八八八六五,分为七段,每段下实测月行迟疾之数,与平行相较,以求积差。

  积限积差

  第一段一十二一度二十八分七一二

  第二段二十四二度四十五分九六一六

  第三段三十六三度四十八分三七九二

  第四段四十八四度三十二分五九五二

  第五段六十四度九十五分二四

  第六段七十二五度三十二分九四四

  第七段八十四五度四十二分三三七六

  各置其段积差,以其段积限为法除之,为各段限平差。置各段限平差,与后段相减为一差。置一差,与后段一差相减为二差。

  限平差一差二差

  第一段一十零分七二六零四十七秒七六九秒三六

  第二段一十零分二四八四五十七秒一二九秒本六

  第三段九分六七七二六十六秒四八九秒三六

  第四段九分零一二四七十五秒八四九秒三六

  第五段八分二五四零八十五秒二零九秒三六

  第六段七分四零二零九十四秒五六

  第七段六分四五六四

  置第一段限平差一十零分七二六为凡平积。置第一段一差四十七秒七六,以第一段二差九秒三六减之,余三十八秒四十微,为凡平积差。另置第一段二差九秒三十六微折半,得四秒六十八微,为凡立积差。以凡平积差三十八秒四十微,加凡平积一十零分七二六,得一十一分一十一秒,为定差。置凡平积差三十八秒四十微,以凡立积差四秒六十八微减之,余三十三秒七十二微为实,以十二限为法除之,得二秒八十一微,为平差。置凡立积差四秒六十八微为实,十二限为法,除二次,得三微二十五纤,为立差。

  凡求迟疾,皆以入历日乘十二限二十分,以在八十四限已下为初,已上转减一百六十八限余为末。各以初末限乘立差,得数以加平差,再以初末限乘之,得数以减定差,余以初末限乘之,为迟疾积。其初限是从最迟最疾处顺推至后,末限是从最迟最疾处逆溯至前,其距其距最迟疾处同,故其积度同。太阴与太阳立法同,但太阳以定气立限,故盈缩异数。太阴以平行立限,故迟疾同原。

  布立成法 置立差三微二十五纤,以六因之,得一十九微五十纤,为损益立差。置平差二秒八十一微,倍之,得五秒六十二微,再加损益立差一十九微五十纤,共得五秒八十一微,为初限平立合差。自此以损益立差,累加之,即每限平立合差。至八十限下,积至二十一秒四一五,为平立合差之极。八十一限下差一秒七八零九,八十二限下一秒七八零八,至八十三限下,平立合差,与益分中分,为益分之终。八十四限下差,亦与损分中分,为损分之始。至八十六限下差,亦二十一秒四一五,自此以损益立差累减之,即每限平立合差,至末限与初限同。置定差一十一分一十一秒,内减平差二秒八十一微,再减立差三微二十五纤,余一十一分零八秒一十五微七十五纤为加分定差,即初限损益分。置损益分,以其限平立合差益减损加之。即为次限损益分。以益分积之,损分减之,便为其下迟疾度。以八百二十分为一限日率,累加八百二十分为每限日率。以上俱详立成。

  五星平立定三差之原 凡五星各以实测,分其行度为八段,以求积差,略如日月法。

  木星立差加,平差减。

  积日积差

  第一段一十一日五十刻一度二一五二九七一一二

  第二段二十三日二度三四零五二一四

  第三段三十四日五十刻三度三五四一三七二六五

  第四段四十六日四度二三四六零九一二

  第五段五十七日五十刻四度九六零四零一三七五

  第六段六十九日五度五零九九七八四四

  第七段八十零日五十刻五度八六一八零四七二五

  第八段九十二日五度九九四三四四六四

  凡平差凡平较凡立较

  第一段一十分五六七八零一三十九秒一六二一六秒二四二二

  第二段一十分一七六一八四十五秒四零四三六秒二四二二

  第三段九分七二二一三七五十一秒六四六五六秒二四二二

  第四段九分二零五六七二五十七秒八八八七六秒二四二二

  第五段八分六二六七八五六十四秒一三零九六秒二四二二
返回目录 上一页 下一页 回到顶部 2 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!