按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
关于这个B×D规律,首先要说明的是它是费米加速过程的绝对最小能量要求。乘积达不到这个最小值,这一场所就不符合加速过程的要求。特别是要获得较大B×D值,就需要磁场按某种方式运动,而且运动得越快越好。与快速运动的磁场泡碰撞将有更多的能量转移到宇宙射线粒子上。关于能量达到10^20eV的宇宙射线粒子的可能加速场所我们知道些什么?请记住,已经知道这类粒子确实存在,从而它们必定有其被加速的场所。事实是,宇宙间实际上不可能找到能让质子加速到这个必须的BD乘积能量值的场所,即便假定该磁场的运动速度接近光速也还是不行!这就是此时此刻这个理论碰上的根本问题。有两种类型的天体处于有可能担当这个加速场所角色的范围内,其实也都是勉强的解释!一种天体可以从银河系中找到,而另一种天体在银河系外更远的地方。
脉冲星是具有极大磁场的天体样本之一,其磁场要比太阳周围的磁场强大一万亿倍。尽管它们是一种体积奇小的天体(直径只有30千米),但它的BD乘积仍然足够大,使它当之无愧地挤进了可以考虑的10^20eV高能宇宙射线加速场所之内。加速机制确实并不清楚。在宇宙射线从这个狭小的环境逃掉之前,整个加速过程一定是非常快的。无论怎样,脉冲星的磁场(和电场)出奇的强大。在其中存在着特定的加速过程,这至少是可以接受的!
另一个仅有的合理候选源与脉冲星也不会有太大的区别,它由活动星系喷流中的射电热斑构成。这些区域的磁场较弱,其巨大的BD乘积主要是由这种场所的巨大尺度造成的,其尺度之大起码和正常星系差不多。在这里,加速过程可能是一件从容不迫的事情。伴随着宇宙射线粒子与快速运动的磁场间的无规律偶然碰撞,它们被困在这种巨大容器之中会长达几百万年。已经观测到有大量物质从活动星系的喷流中以极高的速度喷射出来的证据。沿着高速喷射的物质同时存在着它携带的磁场,这正好是费米机制所要求的组成条件。射电热斑很可能是某种磁节点或喷流中的不规则性。热斑显示出是喷流中非常活跃的地方,已证实了电子在热斑中能被加速到几百万电子伏的能量。强烈的射电波辐射活动就是高能电子在节点中螺旋状环绕扭曲的磁力线时产生辐射能量的现象。热斑确实是个极其强大的区域,但它足以强大到能把质子加速到比电子能量高100万亿倍的极高能量吗?
答案须深入细节去寻找——不规则性磁场的速度、连续磁场的均匀性以及该区域的尺度。似乎上述这些地点就是最高能量宇宙射线的主要争夺者。射电热斑和脉冲星二者从理论上看都可能入选,但是因为射电热斑在重要参量的数值上允许有更大变动余地,所以理论家们更倾向于射电热斑。我们对射电热斑所知道的要比对脉冲星知道的少得多,所以容易编造理由把射电热斑当成最高能量宇宙射线源!真是不凑巧,没有碰到既具有射电热斑的尺度又具有脉冲星的磁场强度的空间区域。这种二者兼备的区域准能把粒子加速到超过观测到的最高能量粒子的能量!这种区域或许在什么地方肯定存在着?天体物理学教给我们的经验是,说〃不可能〃是要担风险的!
神秘的CygX^3(天鹅座X3)
虽然看来脉冲星不像是把宇宙射线加速到最高能量粒子的场所,但却很可能是加速到10^18eV能量的较好场所。在这个研究范围,看起来已经取得一些实验证据,它们大多是由蝇眼实验和AGASA阵列揭示出来的。这与叫做CygX^3(天鹅座X^3)的银河系X射线星有关联。这个天体是在天鹅星座中发现的第三个X射线源,是在1966年用火箭观测发现的。其后1970年乌乎鲁(Uhuru)卫星(NASAX射线观测卫星,以斯瓦西里文的一个单词命名,意思是〃自由〃)的观测显示,来自这个天体的X射线信号,也和来自另外一些X射线源的信号类似,有周期性变化。这种周期变化现象向人们提示,CygX^3不是一颗单一的恒星,而是两颗星在作相互轨道绕行。天文学家们认为,其中一颗是中子星,它的强大引力正把另外那颗主序星伴星大气中的物质剥夺过来。被吸引过来的气体明显地汇聚成环绕着致密中子星的一个盘状物。摩擦使得气体被加热,于是产生了X射线。随着巨大伴星围绕着中子星每48小时在轨道上转一圈,就出现周期性地把X射线源挡住的现象。于是X射线强度随之出现周期性的强弱变化。像CygX^3这种射线双星是一类稀有天体,在银河系和最近的星系(大、小麦哲伦云)中,总共只发现了十几颗这样的天体。在高能天体物理学领域,这类天体属于在全波段上研究得最多的某些天体之一,其辐射能量范围从射电波直到X射线甚至更高。
CygX^3是观测到还发射γ射线的少数这种辐射源之一。但令人遗憾的是,由于信号水平很低,观测结果的确实性并不明显。如果γ射线的观测结果确实无误,就能帮助解决有关宇宙射线产生的某些秘密。我们从前面的第七章得知,在20世纪80年代早期采用地面阵列对CygX^3进行的观测,看来表明这个源正在发射10^15eV能量的γ射线。在X射线双星系统中产生γ射线的最有希望的各个模型都提到,γ射线的发射实际上是宇宙射线加速的副产品。宇宙射线是在强磁场和强电场的典型环境中产生的,随着该系统中新的供能粒子的存在就会释放γ射线。当宇宙射线与伴星大气中的气体核发生碰撞时,产生微小簇射,γ射线就是那些级联中的一部分。1984年,里兹大学的希拉斯考察了来自CygX^3的γ射线信号。从这些数值反向推算,他指出单独CygX^3一个天体就能承担起银河系中全部观测到的宇宙射线粒子的加速任务!而且所有粒子的能量都能至少达到10^16eV。这是一个令人吃惊的思想。凭借这个想法,人们可以争得经费,建造越来越大的地面阵列,以便用更高的灵敏度对CygX^3进行观测研究。你可能已经想起来,遗憾的是这些阵列刚建造好,CygX^3就熄灭了!至今仍未停止关于该发射源是否真正发射过γ射线的争论。但我们知道,它在其他电磁能谱区的辐射也是分散的,所以许多人认为在发射γ射线上,它也是个特例。
1986年,是CygX^3歇斯底里大发作的时期,蝇眼研究组的两个成员杰里·艾尔伯特(Jerry Elbert)和保罗·索末尔斯(Paul Sommers)当年对检测器获得的簇射到达方向的资料进行了考查。他们在分析中把蝇眼取得的全部宇宙射线到达方向的数据都绘制在天球图上。最后完成了一张天空不同部位所到达宇宙射线分布密度的彩色图。横跨天空彩图最大的变化是由所谓曝光效应造成的。天球的某些部分每天通过犹他州阵列的视野,但也有些天空部分蝇眼检测器不易接近。例如,银河系中心的天空位置只能从南半球观测,当艾尔伯特和索末尔斯把曝光效应改正之后,他们发现,在天球图上相当于宇宙射线到达方向最密集位置的最明亮点,落在了CygX^3的方向上!
这能说明宇宙射线是CygX^3发射的吗?经过谨慎的分析之后指出,这个信号只能是银河系中从其他地方来的宇宙射线粒子偶然汇集于这个方向的现象。不管怎么说,这个现象发生的概率很小,大约只有1/1500的机会。就使得每个人都信服CygX^3正是高能来源说,这样的确定性水平还很不充分。另一方面,也有许多人认为,天空最热点恰好与高能天体物理中研究最多的源之一符合一致,这是非常值得认真对待的事情。艾尔伯特和索末尔斯所分析研究的蝇眼数据所覆盖的时间从20世纪80年代早期一直到1987年。就其他研究组来说,核查数据资料寻找类似信号,显然是一步重要的研究工作。
泄露给人们的是不令人满意的难以理解的结果。日本的AGASA研究组分析研究了Akeno阵列不同发展阶段所取得的数据。他们从CygX^3揭示出一个与犹他结果的强度和统计确定性相同的信号。就犹他实验的工作者和CygX^3精神的信仰者倾刻受到的鼓舞来看,这确实是一件重大新闻,但仅是昙花一现。消息很快也从A·瓦特逊(Alan Watson)和哈佛拉公园研究组传来,他们也都搜寻了蝇眼和Akeno研究组同一时期的资料,但他们没能从那个发射源找到任何信号!哈佛拉公园天空图中天空的那一部分十分单调,没有从CygX^3发出额外辐射的任何证据。对于这种奇异的不一致仍然没有舆论裁决。如果没有Akeno的观测结果,哈佛拉公园的数据会使许多人相信,犹他观测结果是统计上的侥幸事件,1/1500的聚集机会真的发生了。但是,Akeno的认可完全改变了论据,使得人们直到今天还在搔头皮。
假定CygX^3的结果是真的,就要问从它发射出来的是哪种粒子?信号出现在蝇眼和Akeno阵列接收到的最低能量3×10^17eV附近。质子以如此低的能量不可能沿直线路径穿过星系磁场。显然结论首先是,极高能量γ射线引发了这些空气簇射,使其成为曾观测到的最高能量光子。但有人在几年前提出了另一个可能性,提出者中包括密执安大学的L·琼斯(Larry Jones)。
琼斯指出,因为中子不带电荷,可以不受阻挠地穿过磁场。对于自由中子(即未被束缚在原子核中的中子)来说,惟一的问题是它会衰变掉。实际情况是,如果把一颗中子放进实验试管中,最典型的观察结果就是,在15分钟以内它会衰变成一粒质子和一粒电子!从表面上看来,中子的寿命不长,不能胜任在恒星间作长距离旅行。但是琼斯和其他人指出,如果中子以接近光速的速度运动,爱因斯坦狭义相对论中提出的时间变慢效应,能使自由中子跨越星系的旅行成为可能!对具有蝇眼能量的粒子来说,中子的时钟走得极慢,地球上15分钟等于