按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
无二的,失去了他的支持,海森堡感觉就像在河中游水的小孩子失去了大人的臂膀,有种
孤立无援的感觉。
不过,现在玻尔已经去挪威度假了,他大概在滑雪吧?海森堡记得玻尔的滑雪水平拙劣得
很,不禁微笑一下。玻尔已经不能提供什么帮助了,他现在和克莱恩抱成一团,专心致志
地研究什么相对论化的波动。波动!海森堡哼了一声,打死他他也不承认,电子应该解释
成波动。不过事情还不至于糟糕到顶,他至少还有几个战友:老朋友泡利,哥廷根的约尔
当,还有狄拉克——他现在也到哥本哈根来访问了。
不久前,狄拉克和约尔当分别发展了一种转换理论,这使得海森堡可以方便地用矩阵来处
理一些一直用薛定谔方程来处理的概率问题。让海森堡高兴的是,在狄拉克的理论里,不
连续性被当成了一个基础,这更让他相信,薛定谔的解释是靠不住的。但是,如果以不连
续性为前提,在这个体系里有些变量就很难解释,比如,一个电子的轨迹总是连续的吧?
海森堡尽力地回想矩阵力学的创建史,想看看问题出在哪里。我们还记得,海森堡当时的
假设是:整个物理理论只能以可被观测到的量为前提,只有这些变量才是确定的,才能构
成任何体系的基础。不过海森堡也记得,爱因斯坦不太同意这一点,他受古典哲学的熏陶
太浓,是一个无可救要的先验主义者。
“你不会真的相信,只有可观察的量才能有资格进入物理学吧?”爱因斯坦曾经这样问他
。
“为什么不呢?”海森堡吃惊地说,“你创立相对论时,不就是因为‘绝对时间’不可观
察而放弃它的吗?”
爱因斯坦笑了:“好把戏不能玩两次啊。你要知道在原则上,试图仅仅靠可观察的量来建
立理论是不对的。事实恰恰相反:是理论决定了我们能够观察到的东西。”
是吗?理论决定了我们观察到的东西?那么理论怎么解释一个电子在云室中的轨迹呢?在
薛定谔看来,这是一系列本征态的叠加,不过,forget him!海森堡对自己说,还是用我
们更加正统的矩阵来解释解释吧。可是,矩阵是不连续的,而轨迹是连续的,而且,所谓
“轨迹”早就在矩阵创立时被当作不可观测的量被抛弃了……
窗外夜阑人静,海森堡冥思苦想而不得要领。他愁肠百结,辗转难寐,决定起身到离玻尔
研究所不远的Faelled公园去散散步。深夜的公园空无一人,晚风吹在脸上还是凛冽寒冷
,不过却让人清醒。海森堡满脑子都装满了大大小小的矩阵,他又想起矩阵那奇特的乘法
规则:
p×q ≠ q×p
理论决定了我们观察到的东西?理论说,p×q ≠ q×p,它决定了我们观察到的什么东西
呢?
I×II什么意思?先搭乘I号线再转乘II号线。那么,p×q什么意思?p是动量,q是位置,
这不是说……
似乎一道闪电划过夜空,海森堡的神志突然一片清澈空明。
p×q ≠ q×p,这不是说,先观测动量p,再观测位置q,这和先观测q再观测p,其结果是
不一样的吗?
等等,这说明了什么?假设我们有一个小球向前运动,那么在每一个时刻,它的动量和位
置不都是两个确定的变量吗?为什么仅仅是观测次序的不同,其结果就会产生不同呢?海
森堡的手心捏了一把汗,他知道这里藏着一个极为重大的秘密。这怎么可能呢?假如我们
要测量一个矩形的长和宽,那么先测量长还是先测量宽,这不是一回事吗?
除非……
除非测量动量p这个动作本身,影响到了q的数值。反过来,测量q的动作也影响p的值。可
是,笑话,假如我同时测量p和q呢?
海森堡突然间像看见了神启,他豁然开朗。
p×q ≠ q×p,难道说,我们的方程想告诉我们,同时观测p和q是不可能的吗?理论不但
决定我们能够观察到的东西,它还决定哪些是我们观察不到的东西!
但是,我给搞糊涂了,不能同时观测p和q是什么意思?观测p影响q?观测q影响p?我们到
底在说些什么?如果我说,一个小球在时刻t,它的位置坐标是10米,速度是5米/秒,这
有什么问题吗?
“有问题,大大地有问题。”海森堡拍手说。“你怎么能够知道在时刻t,某个小球的位
置是10米,速度是5米/秒呢?你靠什么知道呢?”
“靠什么?这还用说吗?观察呀,测量呀。”
“关键就在这里!测量!”海森堡敲着自己的脑壳说,“我现在全明白了,问题就出在测
量行为上面。一个矩形的长和宽都是定死的,你测量它的长的同时,其宽绝不会因此而改
变,反之亦然。再来说经典的小球,你怎么测量它的位置呢?你必须得看到它,或者用某
种仪器来探测它,不管怎样,你得用某种方法去接触它,不然你怎么知道它的位置呢?就
拿‘看到’来说吧,你怎么能‘看到’一个小球的位置呢?总得有某个光子从光源出发,
撞到这个球身上,然后反弹到你的眼睛里吧?关键是,一个经典小球是个庞然大物,光子
撞到它就像蚂蚁撞到大象,对它的影响小得可以忽略不计,绝不会影响它的速度。正因为
如此,我们大可以测量了它的位置之后,再从容地测量它的速度,其误差微不足道。
“但是,我们现在在谈论电子!它是如此地小而轻,以致于光子对它的撞击决不能忽略不
计了。测量一个电子的位置?好,我们派遣一个光子去执行这个任务,它回来怎么报告呢
?是的,我接触到了这个电子,但是它给我狠狠撞了一下后,飞到不知什么地方去了,它
现在的速度我可什么都说不上来。看,为了测量它的位置,我们剧烈地改变了它的速度,
也就是动量。我们没法同时既准确地知道一个电子的位置,同时又准确地了解它的动量。
”
海森堡飞也似地跑回研究所,埋头一阵苦算,最后他得出了一个公式:
△p×△q 》 h/2π
△p和△q分别是测量p和测量q的误差,h是普朗克常数。海森堡发现,测量p和测量q的误
差,它们的乘积必定要大于某个常数。如果我们把p测量得非常精确,也就是说△p非常小
,那么相应地,△q必定会变得非常大,也就是说我们关于q的知识就要变得非常模糊和不
确定。反过来,假如我们把位置q测得非常精确,p就变得摇摆不定,误差急剧增大。
假如我们把p测量得100%地准确,也就是说△p=0,那么△q就要变得无穷大。这就是说,
假如我们了解了一个电子动量p的全部信息,那么我们就同时失去了它位置q的所有信息,
我们一点都不知道,它究竟身在何方,不管我们怎么安排实验都没法做得更好。鱼与熊掌
不能得兼,要么我们精确地知道p而对q放手,要么我们精确地知道q而放弃对p的全部知识
,要么我们折衷一下,同时获取一个比较模糊的p和比较模糊的q。
p和q就像一对前世冤家,它们人生不相见,动如参与商,处在一种有你无我的状态。不管
我们亲近哪个,都会同时急剧地疏远另一个。这种奇特的量被称为“共轭量”,我们以后
会看到,这样的量还有许多。
海森堡的这一原理于1927年3月23日在《物理学杂志》上发表,被称作Uncertainty
Principle。当它最初被翻译成中文的时候,被十分可爱地译成了“测不准原理”,不过
现在大多数都改为更加具有普遍意义的“不确定性原理”。
*********
量子人物素描
薛定谔:
bbs。sh。sina/shanghai/view。cgi?forumid=173
海森堡:
bbs。sh。sina/shanghai/view。cgi?forumid=173
玻尔:
bbs。sh。sina/shanghai/view。cgi?forumid=173
上帝掷骰子吗——量子物理史话(7…2)
版权所有:castor_v_pollux 原作 提交时间:2003…11…11 17:24:07
第七章 不确定性
二
不确定性原理……不确定?我们又一次遇到了这个讨厌的词。还是那句话,这个词在物理
学中是不受欢迎的。如果物理学什么都不能确定,那我们还要它来干什么呢?本来波恩的
概率解释已经够让人烦恼的了——即使给定全部条件,也无法预测结果。现在海森堡干得
更绝,给定全部条件?这个前提本身都是不可能的,给定了其中一部分条件,另一部分条
件就要变得模糊不清,无法确定。给定了p,那么我们就要对q说拜拜了。
这可不太美妙,一定有什么地方搞错了。我们测量了p就无法测量q?我倒不死心,非要来
试试看到底行不行。好吧,海森堡接招,还记得威尔逊云室吧?你当初不就是为了这个问
题苦恼吗?透过云室我们可以看见电子运动的轨迹,那么通过不断地测量它的位置,我们
当然能够计算出它的瞬时速度来,这样不就可以同时知道它的动量了吗?
“这个问题,”海森堡笑道,“我终于想通了。电子在云室里留下的并不是我们理解中的
精细的‘轨迹’,事实上那只是一连串凝结的水珠。你把它放大了看,那是不连续的,一
团一团的‘虚线’,根本不可能精确地得出位置的概念,更谈不上违反不确定原理。”
“哦?是这样啊。那么我们就仔细一点,把电子的精细轨迹找出来不就行了?我们可以用
一个大一点的显微镜来干这活,理论上不是不可能的吧?”
“对了,显微镜!”海森堡兴致勃勃地说,“我正想说显微镜这事呢。就让我们来做一个
思维实验(Gedanken…experiment),想象我们有一个无比强大的显微镜吧。不过,再厉
害的显微镜也有它基本的原理啊,要知道,不管怎样,如果我们用