ÓÑÇéÌáʾ£ºÈç¹û±¾ÍøÒ³´ò¿ªÌ«Âý»òÏÔʾ²»ÍêÕû£¬Çë³¢ÊÔÊó±êÓÒ¼ü¡°Ë¢Ð¡±±¾ÍøÒ³£¡ÔĶÁ¹ý³Ì·¢ÏÖÈκδíÎóÇë¸æËßÎÒÃÇ£¬Ð»Ð»£¡£¡ ±¨¸æ´íÎó
ÈÙÒ«µç×ÓÊé ·µ»Ø±¾ÊéĿ¼ ÎÒµÄÊé¼Ü ÎÒµÄÊéÇ© TXTÈ«±¾ÏÂÔØ ½øÈëÊé°É ¼ÓÈëÊéÇ©

30+mba-µÚÕÂ

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



66¡¡per¡¡cent¡¡like¡¡being¡¡able¡¡to¡¡shop¡¡for¡¡more¡¡than¡¡one¡¡product¡¡and¡¡in¡¡many¡¡
outlets¡¡at¡¡the¡¡same¡¡time£»¡¡54¡¡per¡¡cent¡¡claim¡¡that¡¡there¡¡are¡¡products¡¡that¡¡they¡¡
Operations¡¡Management¡¡245¡¡
can¡¡only¡¡find¡¡online£»¡¡53¡¡per¡¡cent¡¡like¡¡not¡¡having¡¡to¡¡deal¡¡with¡¡salespeople£»¡¡
44¡¡per¡¡cent¡¡reckon¡¡product¡¡information¡¡is¡¡be¡£¡£er¡¡online£»¡¡and¡¡perhaps¡¡the¡¡
most¡¡revealing¡¡statistic¡¡of¡¡all£»¡¡only¡¡40¡¡per¡¡cent¡¡preferred¡¡online¡¡to¡¡offline¡¡
because¡¡they¡¡expected¡¡to¡¡find¡¡lower¡¡prices¡£¡¡
Information¡¡systems¡¡£¨IS£©¡¡
If¡¡the¡¡internet¡¡is¡¡the¡¡external¡¡operations¡¡powerhouse£»¡¡IS¡¡systems¡¡are¡¡the¡¡
mirror¡¡image£»¡¡handling¡¡all¡¡the¡¡data¡¡needed¡¡to¡¡run¡¡a¡¡21st¡­century¡¡organization¡£¡¡
Every¡¡part¡¡of¡¡a¡¡business¡¡collects¡¡data£»¡¡production¡¡monitors¡¡output¡¡
efficiencies£»¡¡stock¡¡levels¡¡and¡¡quality£»¡¡finance¡¡gets¡¡the¡¡accounts£»¡¡marketing¡¡
gets¡¡figures¡¡on¡¡customer¡¡demand¡¡and¡¡petitor¡¡market¡¡share£»¡¡HR¡¡keeps¡¡
track¡¡of¡¡pay£»¡¡training£»¡¡accidents¡¡at¡¡work¡¡and¡¡sickness¡£¡¡But¡¡none¡¡of¡¡this¡¡data¡¡
is¡¡much¡¡use¡¡unless¡¡there¡¡is¡¡an¡¡integrated¡¡system¡¡that¡¡can¡¡integrate£»¡¡collate£»¡¡
analyse¡¡and¡¡disseminate¡¡this¡¡information¡¡in¡¡a¡¡timely¡¡manner¡¡and¡¡in¡¡a¡¡
format¡¡that¡¡can¡¡be¡¡understood¡¡and¡¡used¡¡by¡¡operating¡¡management¡£¡¡
To¡¡be¡¡effective£»¡¡IS¡¡needs¡¡an¡¡appropriate¡¡amount¡¡of¡¡hardware¡¡and¡¡so¡£¡£ware£»¡¡
as¡¡firms¡¡that¡¡effectively¡¡exploit¡¡the¡¡power¡¡muter¡¡information¡¡systems¡¡
can¡¡deliver¡¡can¡¡outperform¡¡others¡£¡¡It¡¡can¡¡play¡¡a¡¡major¡¡role¡¡in¡¡opening¡¡new¡¡
distribution¡¡channels£»¡¡streamlining¡¡supply¡¡chains¡¡and¡¡providing¡¡efficient¡¡
electronic¡¡markets¡£¡¡Mainframe/legacy¡¡systems£»¡¡PCs£»¡¡workstations£»¡¡intranets¡¡
and¡¡the¡¡internet£»¡¡as¡¡well¡¡as¡¡local¡¡area¡¡networks¡¡£¨LANs£©¡¡and¡¡wide¡¡area¡¡
networks¡¡£¨WANs£©£»¡¡customer¡¡relationship¡¡management¡¡£¨CRM£©¡¡and¡¡the¡¡
ubiquitous¡¡Moore¡¯s¡¡Law¡¡stating¡¡that¡¡processing¡¡power¡¡doubles¡¡every¡¡18¡¡
months¡¡while¡¡costs¡¡halve£»¡¡are¡¡all¡¡vital¡¡elements¡¡in¡¡an¡¡MBA¡¯s¡¡IS¡¡vocabulary¡£
Quantitative¡¡
and¡¡qualitative¡¡
research¡¡and¡¡
analysis¡¡
¡£¡¡Decision¡­making¡¡tools¡¡
¡£¡¡Statistical¡¡methods¡¡
¡£¡¡Making¡¡forecasts¡¡
¡£¡¡Assessing¡¡cause¡¡and¡¡effect¡¡
¡£¡¡So¡£¡£¡¡studies¡¡
¡£¡¡Carrying¡¡out¡¡surveys¡¡
Finance£»¡¡marketing£»¡¡operations¡¡and¡¡HRM¡¡£¨human¡¡resource¡¡management£©¡¡
collect¡¡an¡¡inordinate¡¡amount¡¡of¡¡data¡¡and¡¡the¡¡IT¡¡£¨information¡¡technology£©¡¡
department¡¡processes¡¡it¡£¡¡However£»¡¡it¡¡falls¡¡to¡¡the¡¡application¡¡of¡¡analysis¡¡
techniques¡¡to¡¡interpret¡¡the¡¡data¡¡and¡¡explain¡¡its¡¡significance¡¡or¡¡otherwise¡£¡¡
Bald¡¡information¡¡on¡¡its¡¡own¡¡is¡¡rarely¡¡of¡¡much¡¡use¡£¡¡If¡¡staff¡¡turnover¡¡goes¡¡
up£»¡¡customers¡¡start¡¡plaining¡¡and¡¡bad¡¡debts¡¡are¡¡on¡¡the¡¡rise£»¡¡these¡¡facts¡¡
on¡¡their¡¡own¡¡may¡¡tell¡¡you¡¡very¡¡li¡£¡£le¡£¡¡Are¡¡these¡¡figures¡¡close¡¡to¡¡average£»¡¡
or¡¡should¡¡it¡¡be¡¡the¡¡mean¡¡or¡¡the¡¡weighted¡¡average¡¡that¡¡will¡¡reveal¡¡their¡¡
true¡¡importance£¿¡¡Even¡¡if¡¡the¡¡figures¡¡are¡¡bad£»¡¡you¡¡need¡¡to¡¡know¡¡if¡¡they¡¡are¡¡
outside¡¡the¡¡range¡¡you¡¡might¡¡reasonably¡¡expect¡¡to¡¡occur¡¡in¡¡any¡¡event¡£¡¡
Generally£»¡¡managers¡¡prefer¡¡to¡¡rely¡¡on¡¡quantitative¡¡methods¡¡for¡¡analysis¡¡
and¡¡there¡¡are¡¡always¡¡plenty¡¡of¡¡numbers¡¡to¡¡be¡¡obtained¡£¡¡Figures¡¡are¡¡efficient£»¡¡
easy¡¡to¡¡manipulate¡¡and¡¡you¡¡should¡¡use¡¡them¡¡whenever¡¡you¡¡can¡£¡¡But¡¡there¡¡is¡¡
11
Quantitative¡¡and¡¡Qualitative¡¡Research¡¡and¡¡Analysis¡¡247¡¡
also¡¡a¡¡rich¡¡seam¡¡of¡¡qualitative¡¡methods¡¡to¡¡get¡¡valuable¡¡information¡¡that¡¡you¡¡
cannot¡¡obtain¡¡well¡¡with¡¡quantitative¡¡methods¡£¡¡These¡¡qualitative¡¡methods¡¡
can¡¡be¡¡used¡¡to¡¡study¡¡human¡¡behaviour¡¡and¡¡more¡¡importantly¡¡changes¡¡in¡¡
behaviour¡£¡¡plex¡¡feelings¡¡and¡¡opinions£»¡¡such¡¡as¡¡why¡¡employee¡¡morale¡¡
is¡¡low£»¡¡customers¡¡are¡¡plaining¡¡or¡¡shareholders¡¡dissatisfied£»¡¡cannot¡¡be¡¡
prehensively¡¡captured¡¡by¡¡quantitative¡¡techniques¡£¡¡Using¡¡qualitative¡¡
methods¡¡it¡¡is¡¡possible¡¡to¡¡study¡¡the¡¡variations¡¡of¡¡plex£»¡¡human¡¡behaviour¡¡
in¡¡context¡£¡¡By¡¡connecting¡¡quantitative¡¡data¡¡to¡¡behaviour¡¡using¡¡qualitative¡¡
methods£»¡¡a¡¡process¡¡known¡¡as¡¡triangulation£»¡¡you¡¡can¡¡add¡¡an¡¡extra¡¡dimension¡¡
to¡¡your¡¡analysis¡¡with¡¡people¡¯s¡¡descriptions£»¡¡feelings¡¡and¡¡actions¡£¡¡
In¡¡business¡¡schools¡¡these¡¡two¡¡methods¡¡of¡¡analysis¡¡are¡¡rarely¡¡taught¡¡together¡¡
and¡¡are¡¡even¡¡less¡¡likely¡¡to¡¡be¡¡taught¡¡in¡¡the¡¡same¡¡department£»¡¡though¡¡
some¡¡marketing¡¡professors¡¡will¡¡manage¡¡joined¡­up¡¡analysis¡¡in¡¡areas¡¡such¡¡as¡¡
surveys¡£¡¡At¡¡Ro¡£¡£erdam¡¡School¡¡of¡¡Management£»¡¡Erasmus¡¡University¡¡£¨¡¡
rsm¡£nl£©£»¡¡for¡¡example£»¡¡in¡¡¡®Quantitative¡¡Platform¡¡for¡¡Business¡¯¡¡students¡¡
investigate¡¡the¡¡qualitative¡¡as¡¡well¡¡as¡¡the¡¡quantitative¡¡methods¡¡available¡¡for¡¡
problem¡¡solving¡¡within¡¡an¡¡organization¡£¡¡But¡¡EM¡¡Lyon¡¡£¨em¡­lyon/¡¡
english£©¡¡confines¡¡its¡¡teaching¡¡to¡¡¡®Business¡¡Statistics¡¯¡¡covering¡¡¡®the¡¡essential¡¡
quantitative¡¡skills¡¡that¡¡will¡¡be¡¡required¡¡of¡¡you¡¡throughout¡¡the¡¡programme¡¯¡£¡¡
MIT¡¡Sloan¡¡School¡¡of¡¡Management¡¡£¨h¡£¡£p£º//mitsloan¡£mit¡£edu/mba/program/¡¡
firstsem¡£php£©¡¡has¡¡a¡¡teaching¡¡module£»¡¡¡®Data£»¡¡Models£»¡¡and¡¡Decision¡¯£»¡¡in¡¡its¡¡
first¡¡semester¡¡that¡¡¡®Introduces¡¡students¡¡to¡¡the¡¡basic¡¡tools¡¡in¡¡using¡¡data¡¡to¡¡
make¡¡informed¡¡management¡¡decisions¡¯¡£¡¡That¡¡seems¡¡heavy¡¡on¡¡quantitative¡¡
analysis£»¡¡covering¡¡probability£»¡¡decision¡¡analysis£»¡¡basic¡¡statistics£»¡¡regression£»¡¡
simulation£»¡¡linear¡¡and¡¡nonlinear¡¡optimization£»¡¡and¡¡discrete¡¡optimization£»¡¡
but¡¡devoid¡¡of¡¡much¡¡qualitative¡¡teaching¡¡ma¡£¡£er¡£¡¡But¡¡MIT¡¡does¡¡uses¡¡cases£»¡¡
and¡¡examples¡¡drawn¡¡from¡¡marketing£»¡¡finance£»¡¡operations¡¡management£»¡¡
and¡¡other¡¡management¡¡functions£»¡¡in¡¡teaching¡¡this¡¡subject¡£¡¡
QUANTITATIVE¡¡RESEARCH¡¡AND¡¡ANALYSIS¡¡
The¡¡purpose¡¡of¡¡quantitative¡¡research¡¡and¡¡analysis¡¡is¡¡to¡¡provide¡¡managers¡¡
with¡¡the¡¡analytical¡¡tools¡¡necessary¡¡for¡¡making¡¡be¡£¡£er¡¡management¡¡decisions¡£¡¡
The¡¡subject£»¡¡while¡¡not¡¡rocket¡¡science£»¡¡requires¡¡a¡¡reasonable¡¡grasp¡¡
of¡¡mathematical¡¡concepts¡£¡¡It¡¡is¡¡certainly¡¡one¡¡area¡¡that¡¡many¡¡a¡£¡£ending¡¡business¡¡
school¡¡find¡¡challenging¡£¡¡But¡¡as¡¡figures¡¡on¡¡their¡¡own¡¡are¡¡o¡£¡£en¡¡of¡¡li¡£¡£le¡¡
help¡¡in¡¡either¡¡understanding¡¡the¡¡underlying¡¡facts¡¡or¡¡choosing¡¡between¡¡
alternatives£»¡¡some¡¡appreciation¡¡of¡¡probability£»¡¡forecasting¡¡and¡¡statistical¡¡
concepts¡¡is¡¡essential¡£¡¡It¡¡is¡¡an¡¡area¡¡where£»¡¡with¡¡a¡¡modicum¡¡of¡¡application£»¡¡
an¡¡MBA¡¡can¡¡demonstrate¡¡skills¡¡that¡¡will¡¡make¡¡them¡¡stand¡¡out¡¡from¡¡the¡¡
crowd¡£
248¡¡The¡¡Thirty¡­Day¡¡MBA¡¡
Decision¡¡theory¡¡
Blaise¡¡Pascal¡¡£¨1623¨C62£©£»¡¡the¡¡French¡¡mathematician¡¡and¡¡philosopher¡¡who¡¡
with¡¡others¡¡laid¡¡the¡¡foundations¡¡for¡¡the¡¡theory¡¡of¡¡probability£»¡¡is¡¡credited¡¡
with¡¡inaugurating¡¡decision¡¡theory£»¡¡or¡¡decision¡¡making¡¡under¡¡conditions¡¡
of¡¡uncertainty¡£¡¡Until¡¡Pascal¡¯s¡¡time£»¡¡the¡¡outes¡¡of¡¡events¡¡were¡¡considered¡¡
to¡¡be¡¡largely¡¡in¡¡the¡¡hands¡¡of¡¡the¡¡gods£»¡¡but¡¡he¡¡instigated¡¡a¡¡method¡¡for¡¡using¡¡
mathematical¡¡analysis¡¡to¡¡evaluate¡¡the¡¡cost¡¡and¡¡residual¡¡value¡¡of¡¡various¡¡
alternatives¡¡so¡¡as¡¡to¡¡be¡¡able¡¡to¡¡choose¡¡the¡¡best¡¡decision¡¡when¡¡all¡¡the¡¡relevant¡¡
information¡¡is¡¡not¡¡available¡£¡¡
Decision¡¡trees¡¡
Decision¡¡trees¡¡are¡¡a¡¡visual¡¡as¡¡well¡¡as¡¡valuable¡¡way¡¡to¡¡organize¡¡data¡¡so¡¡as¡¡
to¡¡help¡¡make¡¡a¡¡choice¡¡between¡¡several¡¡options¡¡with¡¡different¡¡chances¡¡of¡¡
occurring¡¡and¡¡different¡¡results¡¡if¡¡they¡¡do¡¡occur¡£¡¡Trees¡¡£¨see¡¡Figure¡¡11¡£1£©¡¡were¡¡
first¡¡used¡¡in¡¡business¡¡in¡¡the¡¡1960s¡¡but¡¡became¡¡seriously¡¡popular¡¡from¡¡1970¡¡
onwards¡¡when¡¡algorithms¡¡were¡¡devised¡¡to¡¡generate¡¡decision¡¡trees¡¡and¡¡
automatically¡¡reduce¡¡them¡¡to¡¡a¡¡manageable¡¡size¡£¡¡
Making¡¡a¡¡decision¡¡tree¡¡requires¡¡these¡¡steps¡¡to¡¡be¡¡carried¡¡out¡¡initially£»¡¡
from¡¡which¡¡the¡¡diagram¡¡can¡¡be¡¡drawn£º¡¡
¡£¡¡Establish¡¡all¡¡the¡¡alternatives¡£¡¡
¡£¡¡Estimate¡¡the¡¡financial¡¡consequences¡¡of¡¡each¡¡alternative¡£¡¡
¡£¡¡Assign¡¡the¡¡risk¡¡in¡¡terms¡¡of¡¡uncertainty¡¡allied¡¡with¡¡each¡¡alternative¡£¡¡
Figure¡¡11¡£1¡¡shows¡¡an¡¡example¡¡decision¡¡tree¡£¡¡The¡¡conventio
·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©
δÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
ÎÂÜ°Ìáʾ£º ο´Ð¡ËµµÄͬʱ·¢±íÆÀÂÛ£¬Ëµ³ö×Ô¼ºµÄ¿´·¨ºÍÆäËüС»ï°éÃÇ·ÖÏíÒ²²»´íŶ£¡·¢±íÊéÆÀ»¹¿ÉÒÔ»ñµÃ»ý·ÖºÍ¾­Ñé½±Àø£¬ÈÏÕæдԭ´´ÊéÆÀ ±»²ÉÄÉΪ¾«ÆÀ¿ÉÒÔ»ñµÃ´óÁ¿½ð±Ò¡¢»ý·ÖºÍ¾­Ñé½±ÀøŶ£¡