友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

物理学的进化-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



或速度相等,而不管它们是朝哪一个方向开行的。但科学必须创造自己的语言和自己的概念,供它本身使用。科学的概念最初总是日常生活中所用的普通概念,但它们经过发展就完全不同。它们已经变换过了,并失去了普通语言中所带有的含糊性质,从而获得了严格的定义,这样它们就能应用于科学的思维。 
  根据物理学家的观点来看,这样说更合适得多:朝着不同方向运动的两个球的速度是不同的。虽然这纯粹是习惯上的说法,但这样说更为方便:从同一点出发。沿着不同的道路行驶的4辆汽车,尽管速率计上所记录的速率都是约64公里每小时(40英里每小时),但它们的速度是不同的。速率(只考虑绝对值)和速度(还考虑方向)的区别说明物理学如何从日常生活的概念出发,然后把它加以改变,使它更适合于科学的发展。 
  如果长度已经测量出来,那么这结果可以用若干个单位来表示。一根棍的长度也许是307厘米;某件东西的重量也许是2003克;而时间间隔则是多少分多少秒。这里在每一种情况里,测量的结果都是用一个数来表示的。但是单用一个数还不足以表示某些物理概念,认识到这一点是科学研究中的一大进步。例如对表征速度来说,方向和大小都是同样重要的。既有数值又有方向的这种量称为矢量,表示它的符号通常是一个箭头。速度就可以加用一个箭头来表示,更简单他说,速度是用矢量来表示;它的长度是某种选定单位的长度的若干倍,用以表示速度的数值,它的方向就是运动的方向。   
    如果4辆汽车从同一点以相同的速率朝4个不同方向开出,那么它们的速度可以用等长的4个箭头来表示,就像在图1中所画的那样。图中所用的比例尺是2。54厘米(1英寸)表示约64公里每小时(40英里每小时)。用这种方法,任一速度都可用一矢量来表示,反过来,如果比例尺已知,那么根据这种矢量图就可以确定速度。   
  如果两辆汽车在马路上相擦而过,并且速率计上表示的都是约64公里每小时(40英里每小时),那么我们用箭头指向相反方向的两个箭头来表征这两个不同的矢量(图2)。这正如纽约地下火车指示“上行”和“下行”的箭头应该用相反的方向一样。不过所有上行的火车不论经过哪个车站或在哪一条线路上行驶,只要速率相同,都有相同的速度,它们可以单单用一个矢量来表示。矢量并没有说明火车经过哪一个站或者它沿着许多平行轨道中的哪一条在行驶。换句话说,在习惯上,所有像图3中所画的矢量都可以认为是相等的;它们或者是处在同一直线上,或者是相互平行,因此它们具有朝着相同方向的箭头。图4表示不同的矢量,它们或者长度不同,或者方向不同,或者长度和方向都不同。矢量还可以用另一种方法来画:使它们都从同一点出发(图5)。因为出发点是无关紧要的,所以这些矢量既可以表示从同一地点开出的4辆汽车的速度,也可以表示在不同地方以指定的速率和方向行驶的4辆汽车的速度。   
  现在就可以用这种矢量图来描写前面已经讨论过的直线运动的情况。我们说过,沿着直线作匀速运动的小车,只要朝着它运动的方向推它一下,就会增加它的速度。若用图来表示,这可以画成两个矢量:短的那个表示推以前的速度,而长的一个和前者有相同的方向,表示推以后的速度(图6)。虚线矢量的意义是很清楚的,它代表因推而产生的速度的变化。如果在力的方向和运动的方向相反、而运动缓慢下去的情况下,图又稍有不同了。虚线的矢量还表示速度的改变,但在这种情况下它的方向却不同(图7)。很明显,不但是速度本身,而且速度的变化也都是矢量。但是任何一个速度的变化都是由外力引起的,因此力也必须用一个矢量来表示。为了表征一个力,只说我们用多大的劲推小车是不够的,还应当说明我们朝着哪一个方向推。力,正如速度和速度的改变一样,不能单用一个数来表示,应当用一个矢量来表示。因此外力也是一个矢量,而且一定与速度改变的方向相同。在上面两个图中,虚线的矢量既表明力的方向,也表明速度改变的方向。   
    这里怀疑论者也许会说,他看不出引入矢量有什么好处。以上所完成的无非都是把早已知道的论据翻译成为一种不通俗的复杂的语言而已。在这个阶段,确实很难使怀疑论者相信他们是错误的。实际上,目前他们暂时是对的。但是我们将要看到,正是这种奇怪的语言,引起重要的推广,其中矢量就显示了它的重要性。 
运动之谜 
  以上我们只谈了直线运动,我们还远远没有理解在自然界中所观察到的许多运动。我们必须考察曲线运动,下一步就来确定出主宰这些运动的定律。这是一件很不容易的事情,在直线运动的情况中,速度、速度的改变、力等概念是很有用的,但是我们不能立刻看出怎样能把它们应用到曲线运动里去。甚至我们可以想象老的概念已不适于描述一般运动,因而需要创造新的概念。我们应该循着旧路走,还是应该另找一条新路走呢? 
  把概念加以推广是科学上常用的办法。推广的方法不一定只有一种,通常有很多种。但不管是哪一种推广,都必须严格地满足一个要求:假如原来的条件完备时,推广了的概念必须化成原来的概念。 
    我们可以用目前所讨论的例子很好地来说明这个意义。我们可以首先试着把速度、速度的改变和力等概念推广到沿着曲线运动的情况里去。在科学术语上,当我们讲到曲线的时候,已把直线包括进去了。直线是曲线的一种特殊的、平凡的例子。因此,如果速度、速度的改变和力被引用于曲线运动,那么它们就自发地被引用于直线运动。但是这个结果不应跟以前所得到的结果相互矛盾。如果曲线变成直线,那么所有推广了的概念都必须化成描述直线运动的已熟知的概念。但是要惟一地确定这个推广,这样一个限制是不够的。根据这个限制来推广一个概念,还存在很多种可能性。科学的史实指出,就是最简单的推广也有时成功,有时失败。我们必须首先作一个猜测。在目前这个例子里,很容易猜出正确的推广方法。新的、推广了的概念是非常成功的,它既帮助我们理解抛在空中的石子的运动,还帮助我们理解行星的运动。   
    “速度”、“速度的改变”和“力”在曲线运动的普遍情况里表示什么意思呢?我们首先说速度。如果一个很小的物体沿着曲线从左至右运动,这样的小物体通常被称为一个质点。在图8中,曲线上的点表示质点在某个时刻的位置。在这个时刻和这个位置的速度是怎样的呢?伽利略的线索又指引我们走向引出速度的那条路上去。我们必须再一次使用我们的想象力去想象一个理想实验。质点在外力的影响下沿着曲线从左至右运动。我们想象在给定的时间以及在图9上点子所表示的位置上,所有的外力突然都停止作用了。那么,根据惯性定律,运动应当是匀速直线的。实际上,我们自然不能使物体完全不受外界的影响。我们只能作这样的推测:“假使……,结果会怎样?”,再根据这样推测所得出的结论来判断我们的推测是否恰当,而且根据这些结论是否和实验相符来判断。   
  在图10中的矢量表示当外力消失时所猜测的匀速运动的方向,这就是所谓切线方向。通过显微镜来看运动着的质点,人们可以看见曲线的很小部分,它显现为很小的直线段。切线就是它的延长线。因此图上画出来的矢量就代表在给定时刻的速度,速度矢量就在切线上,它的长度就代表速度的数值,或者就像代表汽车的速率计上所表示的速率一样。 
  将运动加以破坏来寻求速度矢量的这个理想实验不能把它看得太认真,它只是帮助我们懂得应该把什么东西称为速度矢量,并使我们能确定出在给定时间和给定点的速度矢量。 
  在图10中画着一个质点沿一根曲线运动时在3个不同位置上的速度矢量。在这个例子中,不仅速度的方向,而且速度的数值(如矢量的长度所示),在运动中都是时刻在变化的。 
    这个新的速度概念是否满足在一切推广中所提出的要求呢?换句话说,假使曲线变成了直线,它是否也简化为以前的速度概念呢?很明显,确实是这样的。直线的切线就是这根直线本身。速度矢量就隐伏在运动的线路上,正像运动着的小车和滚着的圆球的情况一样。   
    其次便要介绍沿着曲线运动的质点的速度的改变。这也可以有各种不同的方法,我们选择其中最简单和最方便的。图10中画出的几个速度矢量代表路线上各不同点上的运动。其中前面的两个矢量和后面的两个矢量可以再画成为使它们从同一点出发(图11),我们已经知道,对矢量来说,这样做是可以的。我们把虚线表示的矢量称为“速度的改变”。它的起点是第一个矢量的末端,而终点是第二个矢量的末端。乍一看来,这个速度的改变的定义似乎不真实而且没有意义。在矢量1和2的方向相同这一特殊情况,这个定义就非常清楚了(图12)。自然,这又回到直线运动上去了。如果这两个矢量具有相同的起点,那么虚线表示的矢量仍然是把它们的终点连接起来。图12和图6完全相同,而以前的概念便成了新概念的一种特殊情况。应该指出,在图中把两根线分开是因为假如不这样的话,它们就重合在一起,分辨不出来了。   
  现在我们来进行推广的最后一步。到目前为止,在我们所作的猜测中,这将是最重要的一个。力和速度的改变之间的联系必须这样建立起来:它能够使我们找出一个线索来了解运动的普遍问题。 
  解释直线运动的
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!