友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

西方的没落(第一卷)-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



的群体(弦乐器、木管乐器、铜管乐器)中发展的,是依据四级人声的音域排列的;现代管弦乐队的历史,以及它所有新乐器的发明和老乐器的改良,事实上是一个音响世界的自足的历史,而且这是一个完全可以用高等分析的形式加以表现的世界。
  五
  大约公元前540年,当毕达哥拉斯学派得出数是万物的本原的观点时,所迈出的决不是“数学发展中的一小步”,而是一种全新的数学的诞生。这一新的数学,很久以来,形而上学的提问方式和艺术的形式倾向就已经预示出来了,而现在,由古典心灵的深处迸发而出,形成为一种系统阐发的理论,一种在一幕场景或一个伟大的历史时刻诞生的数学——如同埃及人的数学、巴比伦文化的代数天文学及其黄道坐标系统(ecliptic co…ordinate system)诞生的情形一样。但这种数学是全新的,因为那些古老的数学早已消失无形了,而埃及的数学从未形诸于文字。公元前2世纪所完成的古典数学,亦随古典时代的转换而消失(尽管表面上看,它甚至在今天依然存在,可仅仅是作为一种便利的记号存在着),让位于阿拉伯数学。从我们对亚历山大里亚数学的了解中,可以得出这样一个必要的假设:在中东地区曾出现一次伟大的运动。运动的重心当然是一些波斯…巴比伦学派,如以得撒(Edessa)、贡狄萨坡拉(Gundisapora)和忒息丰(Ctesiphon)等地的学派,至于它们是如何传入讲古典语言的地区,我们只知道一些细枝末节。尽管都有希腊名字,但亚历山大里亚的数学家们——如研究等周形的芝诺多罗斯(Zenodorus)、探讨空间中的和谐面束(harmonic pencile in space)的特性的塞里努斯(Serenus)、介绍迦勒底人的圆周划分法的希普西克勒(Hypsicles),尤其还有丢番图(Diophantus)——毫无疑问全都是阿拉米人(Aramaeans),他们的著作仅仅是主要写于叙利亚的文献的一小部分。可见,这种数学在阿拉伯…伊斯兰思想家们的研究中获得了其完整形式,不过,在这些思想家之后,数学发展又一次出现了一个漫长的间断。接下来,产生了一种全新的数学,那就是西方人或者说我们自己的数学,我们出于一种迷恋而将其称之为“Mathematics”,认为它是两千年演进的顶峰和最终目标,尽管事实上,严格来说,直到今天为止,它也不过存在了区区可数的几百年而已。
  古典数学中最有价值的东西,便是它的这一命题:数是一切可为感官所感知的事物的本质。把数定义为一种度量,这体现了一个热情地投身于“此时”(the “now”)、“此地”(the “here”)的心灵的整个世界感。在这个意义上,度量意味着对某个切近而具体的事物的度量。看一下古典艺术作品的内容,例如那些自由矗立的裸体人像:在此,存在的每一本质的和重要的要素、它的整个节奏,由雕塑的各个部分的表面、向度及可感觉到的关系毫无保留地表现出来了。毕达哥拉斯学派有关数的和谐的观点虽然有可能是从音乐中演绎出来的——应当注意,这一音乐并不知道所谓的复调或和声,由之而形成的乐器是为了表现单一的、丰满的、近乎清新的音调——但它似乎已成为怀有这一理想的雕刻家的典范。那被加工过的石头仅仅就是一块石头,只考虑其大小,只量度其形式;它到底是什么,这要取决于它在雕刻家的刻刀下会成为什么。没有了雕刻家的凿刻,它就只是一团混沌,是尚未实现成形的事物,事实上,在未经雕凿之初,它根本不具任何意义。与此相同的感受,转移至更高阶段的创作过程中,便形成了与混沌状态正相对立的宇宙秩序(cosmos)。对于古典心灵来说,所谓“宇宙秩序”,意味着外在世界的一种清晰状态,一种和谐的秩序,那各自独立的事物,作为一个完好地界定的、可理解的和在场的整体,都包含在这一秩序中。这些事物的总和恰好构成了整个世界,而存在于它们之间的各交互空间——在我们看来,这些空间充满了“宇宙空间”(Universe of Space)的生动象征——对于古典人来说不过是虚空(το μη ον)。
  对于古典人类而言,广延意味着实体,对于我们而言,广延意味着一种使物“呈现”出来的空间的功能。从这一观点往回看,我们也许可以看到古典形而上学最深层的一个概念,那就是阿那克西曼德(Anaximander)的“ä;πειρου”(无定形)——这个词几乎无法用西方语言来翻译。它不具有毕达哥拉斯意义上的“数”,没有可量度的向度或可界定的限度,因此也就无所谓存在;恰如尚未凿刻成雕像的石块,没有度量,没有形式;是视觉上无涯无际、无有形式的αρχη(始基),只有透过感官的分割,才能成为某个东西(或者说,成为世界)。在康德的世界图象中,正是以空间取代了古典认知的这一基本的先验形式,亦即形体本身;对于那种空间,康德坚持认为,所有一切事物都可以从它的角度加以“思考”。
  现在,我们明白了是什么东西把不同的数学,尤其是古典数学和西方数学,区分开来了。成熟的古典世界的整个世界感使得它把数学只看成是有关形体之间的大小、向度和形式的关系的理论。从这一世界感出发,当毕达哥拉斯提出和表达那一具有决定意义的公式时,数对于他来说就成了一个视觉的(optical)象征——不是一般形式的度量,不是抽象的关系,而是既成领域的哨所,或者更确切地说,是感官能够分割、能够加以回视的既成之物的部分的哨所。整个的古典世界单单只把数字设想为度量的单位,设想为大小、长度和面的单位,而且,对于它来说,除了这些方面,其他的广延都是不可想象的。整个古典数学归根到底就是一种测体学(stereometry),一种固体几何学(solid geometry)。欧几里得在公元前3世纪就完成了他的几何学体系,在他看来,三角形是一种具有深刻必然性和有限定的表面的形体,而决不是一种由三条相交直线构成的系统,或由三度空间中的三个点形成的集合。欧几里得定义直线是“没有宽度的长度”(μηκοs απλατεs),在我们看来,这一定义实在不足为道——而在古典数学中,这却是一个卓绝无比的定义。
  西方人的数,不是——如康德甚至赫尔姆霍兹(Helmholtz)所认为的——从作为一种先验的认知形式的时间中产生出来的某个东西,而是某个特别地具有空间性的东西,因为它是同类单位的一种秩序(或排列)。实际的时间(正如我们接下来将越来越明确地看到的)与数学的事物没有一丁点的关系。数唯一地只属于广延的领域。但是,恰如世上有多种文化一样,广延之物有秩序地展现的可能性及其必然性也有多种。古典的数是一种思维过程,但处理的不是空间关系,而是明显可限定的、实在的单位;由此可自然地和必然地得出这样一个认识:古典人知道的仅仅是“自然”数(正数和整数),相反,在我们西方人的数学中,自然数在复数、超复数、非阿基米德及其他数系中却只占一个极其不起眼的地位。
  由此看来,无理数——即我们的记数法中十进位的不尽小数——的观念在希腊精神中被认为是不可思议的。欧几里得——我们应当对他有更全面的了解——说,不可公度的线条是“不能如数字那样彼此关联的。”事实上,无理数的观念一旦出现,便把数的概念和大小的概念分离开来了,因为这种数(例如π)的大小是不能以任何直线来界定或准确地表达的。进而,据此言之,在思考——比如说——正方形的边和对角线的关系时,希腊人必定会突然遇到一种完全不同的数,这种数对于古典心灵而言是全然陌生的,因此对它有一种恐惧,认为其存在本身的秘密一旦被揭开,将会招致灭顶之灾。有一则奇特而重要的晚期希腊传说,依据这一传说,第一个揭开无理数那深藏的奥秘的人必将死于非命,“因为那不可言传的、无形无态的秘密必须永远隐匿于人世。”
  支撑这一传说的那种恐惧与希腊人的一种观念完全是同一的,那一观念阻止哪怕最成熟的希腊人为了在政治上更好地组织乡村而去扩展他们的微型城邦,阻止他们延伸街道直至景色的尽头,延伸小巷直至远景深处;那一观念使希腊人对时间有一种畏惧。并且又一次,它是来自巴比伦的天文学及其对无尽星空的透视。那一观念还使得希腊人不敢冒险沿海道走出地中海,直到很久之后,腓尼基人(Phoenicians)和埃及人才胆敢这么做。这是一种深沉的形而上的恐惧,因为这一恐惧,古典生存所牢守的那一在感觉上可理解的和在场的东西,突然陷入了崩溃,把它的宇宙秩序(主要地是由艺术来创造和维系的)投入了未知的原始深渊。因此,要想理解这一恐惧,就得理解古典数字的终极意义——即是与不可度量相对立的度量——就得把握古典数字的限度的高级伦理意义。歌德作为一个自然研究者,也感觉到了这一恐惧——因此他对数学有着一种近乎恐惧的反感,正如我们现在所看到的,实际上,他的这种恐惧乃是对非古典数学,即支撑他的时代的自然哲学的微积分,产生的一种不由自主的反应。
  古典人的宗教感一度越来越强烈地集中于实际地在场的、地方化的祀拜上,因为只有它能表现欧几里得式的神世界。抽象的概念,或者说那些在思想的空间中漂浮不定的教条对于它是全然陌生的。这种祀拜与罗马天主教的一个教条,即偶像的塑像与教堂组织同在,有着诸多的共同点。毫无疑问,这种祀拜的某些方面就包含在欧几里得的数学中——例如,看一看毕达哥拉斯学派的秘密教义,看一看规则的多面体
返回目录 上一页 下一页 回到顶部 2 2
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!