友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

大爆炸-宇宙通史-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



电子对应的反物质粒子是正电子,带有正电荷,其他方面和电子相同。在科幻小说里反物质的概念很常见,它们是无数极为先进的星际飞船发动机的基础,所有这些都来自一个实验事实:当一个粒子和对应的反粒子相撞时,两个粒子都会湮灭,同时释放出巨大的能量。如果在原始宇宙中一个夸克与一个反夸克相遇,它们就会消失,同时发出辐射闪光。反向的进程也会发生,足够高能的辐射(当然是在宇宙演化的早期阶段的能量水平)可以同时产生一对粒子,包含粒子和它的反粒子。这个时期的宇宙充满了辐射,辐射产生粒子对,粒子又极快地在互相碰撞中湮灭,并把能量转移回背景辐射。
    贯穿整个时期,宇宙持续地膨胀和冷却。经过第一个1微秒(仅仅10万亿亿亿亿个普朗克时间),当温度降低到约10万亿度的临界值以下时,夸克的运动速度降低到能够被它们之间的相互引力(强力)所捕获的程度。三个一组夸克聚集到一起形成了我们熟悉的质子和中子,总称重子;而反夸克聚集成反质子和反中子,总称反重子。如果重子和反重子的数量是相等的,那么极有可能它们之间的碰撞会使得重子全部湮灭。而当宇宙膨胀时,辐射的能量被稀释,不再能够产生新的粒子,这样宇宙中的物质就不可能留存到现在。
    仅仅由于从一开始就存在的一点微弱的不平衡挽救了物质,使得我们今天得以存在,使我们能够在这里思考很久以前发生过什么。出于我们至今尚未知晓的原因,每十亿个反重子会对应十亿零一个重子,所以在最初的混战结束后,几乎所有的反重子都消失了,留下的残余的质子和中子形成了今天的原子核。

宇宙的同谋论

    让我们暂时回到现在。想象两个从地球上看去处于相反方向上的距离我们90亿光年的星系,它们之间的距离是180亿光年。泛泛而言,在最大的尺度上,它们身处的宇宙区域看起来是一样的。其中一个可能位于星系团的中心深处,就像我们附近的室女座星系团,另一个可能孤立得多;但是在第一个星系团附近会有孤立的星系,而在第二个星系的附近则不可避免地存在着星系团。所以每个区域都有相同比例的相同类型的星系,而且本地的温度也是一样的。
    这就产生出一个被称为“宇宙同谋”的问题。宇宙年龄目前最好的估计是137亿年,不到180亿年,所以光还没有足够的时间从一个星系传到另一个星系。而根据相对论,光是宇宙中最快的东西。如果连光都没有时间穿过两个区域中间的空间,其他任何事情也不可能发生,没有任何东西能够从一个区域传递到另一个,所以两个区域之间的任何差异都无法消除。但是,无论我们朝哪个方向看,宇宙似乎都一样,有同样类型的星系,几乎按照一样的模式分布,好像它们曾经互相商量过一样。这个事实变得令人不解,被称作“宇宙同谋”。
    为什么这会成为一个问题?难道宇宙在各个方向上看起来一样不是很自然的事情吗?也许有某个现在还不为人所知的规律在支配大爆炸的物理变化,保证只有几乎是均匀的宇宙才能产生。但是现在我们还没发现有任何物理理论能够预言这一现象的迹象,所以至少需要考虑如下的可能,就是宇宙诞生之时不同区域之间可能存在巨大的温度差异,比如在早期宇宙中,一半的温度可能是另一半温度的两倍。那么这样如何产生我们现在观察到的宇宙的均匀性呢?热量没有时间流动到宇宙中冷的部分,甚至没有时间在两个区域之间以光速发送一个消息。在这种环境下,原始的不平衡不可能被修正;而实际上,这些互相远离毫无关联的区域却是非常相似的。
    我们的两个星系现在是互相远离。但是宇宙在非常年轻时要小得多,而在两边的物体有可能互相接触从而交换热量,达到今日所见的均匀性。现在的问题是,这个早期阶段的宇宙到底有多大?出乎意料地,答案相当简单。
    到目前为止我们只讨论过一种能够在天文距离上起作用的力,就是万有引力。它本质上是一种把物体拉到一起的吸引力。引力本身会减缓膨胀的速度。我们可以尝试从现在反推出宇宙的大小随时间是如何变化的,而我们发现宇宙同谋的问题一直到早期宇宙都存在。换句话说,宇宙从来没有小到过能够让光从一侧运动到另一侧的程度。所以从来没有小到能够使得温度差被平坦掉的程度。这个推论是建立在引力是唯一影响膨胀速度的力的基础上的,所以如果我们要解决同谋问题,就必须放弃这个观点。

疯狂的暴胀

    现在流行的解决方案在一定程度上增加了大爆炸理论的复杂度。大多数宇宙学家们现在相信曾有一个异常短暂的快速膨胀期,称为暴胀。在大爆炸后10…35秒到10…32秒之间,宇宙扩展了几十亿倍。在暴胀阶段的最后,膨胀回到了一个比较稳定的速度,和今天观测到的一致。
    如果没有暴胀时期,我们所看到的宇宙中相对侧的区域就既没有时间来交换热量,也没有可能达到充分的平衡。假设的这种快速膨胀使我们能够认为宇宙开始时要小得多,从而可以在加速膨胀开始之前达到温度均衡。剩余的少量不均匀性被尺度上的巨大增加所消除。这个迷人的快速暴胀带来的一个结果就是我们所观测到的区域只是整个宇宙的极小的一部分。即,我们只能观察到实际上是我们周围局部的一点变化,而这注定是非常有限的。用一个日常的比喻,我们知道地球从珠穆朗玛峰峰顶到最深的海沟的底部有很大的高度变化。暴胀的等价效果就是把你脚尖下的一小块地方扩展到整个地球这么大,或者等效地把我们缩小到比最小的病毒还小很多的地步,那么在我们能够到达和探索的范围里,高度的变化将是微乎其微的。对于宇宙中的温度起伏,暴胀也带来了同样的效果。
    但是为什么在婴儿期宇宙膨胀速度会如此突然地急剧增加?看起来需要引入一种新型的力,它和引力起的作用相反,来对这种巨大的加速负责。科学家已经开始研究这种力应该具备什么样的属性,但还没有得出明确的结论。就我们所知,暴胀发生前的宇宙环境并没有任何特别之处,故而这种加速力的突然出现和消失显得多少有些随意。但是它的存在确实使我们能够处理宇宙同谋的问题。
    引入暴胀之后还能为我们解决哪些问题呢?暴胀还能解释我们今天观察到的宇宙中的另两种现象。没有暴胀,那么这两种现象根本无从解释。首先,根据粒子物理的标准理论,一种被称作“磁单极子”的粒子应该能够偶尔被探测到。但实际上,我们从未探测到磁单极子。这无疑需要某种解释。暴胀理论使我们能够争辩,因为这种粒子分布得太稀疏了,所以探测不到并不令人惊讶。比如,为了辩论我们假设在大爆炸中产生了100万亿个这种粒子,那么我们会感到奇怪为什么一个都没有发现。但是如果同样数目的粒子被散布在比暴胀之前大几十亿倍的宇宙中,那么在我们可观测的宇宙范围内找不到这种粒子就很有可能了。暴胀的力度是如此之大,就在它起作用的短暂时间里,它所产生的宇宙也比传统大爆炸理论所预计的大了不知道多少倍。暴胀为这些失踪的粒子提供了一个解释:它们被过度稀释了。

生活在一个平坦的宇宙中

    看似荒唐的暴胀观点的第三根支柱,可能也是最有说服力的一个,涉及宇宙的几何学。大多数人都很熟悉我们在学校可能还有点不情愿学习的欧几里得几何学,我们被告知三角形内角和等于180度。但事情并不总是这样。比如想象画一条线,从北极出发沿格林尼治子午线到赤道,再沿赤道向东转过90度,最后沿子午线穿过俄罗斯回到北极完成一个三角形。那么我们就经过了2个90度的转角,90+90=180度。而我们还需要加上两条子午线之间的那个顶角。欧几里得几何学仅适用于平面。
    而宇宙中的几何学又会是一种什么样的形式呢?事情要复杂得多,因为我们面对的是一个四维空间(三个熟知的空间坐标,加上时间),而非一个二维的表面。让我们考虑最大的尺度,而忽略物质造成的局部畸变。宇宙有无数种可能的几何学,而我们的宇宙似乎精心地选择了一个特殊的类型。观测表明(见第三章中宇宙微波背景辐射),我们生活在一个平坦的宇宙中,在这里,欧几里得几何学即使在最大的尺度上也成立。为什么事情会这样?要达到一个平坦的宇宙,宇宙中必须具有确切数量的物质,差异仅在几个原子之间。换句话说,要是我们的宇宙中少了或多了几个原子,那么它的几何特性就会变得远非平坦。
    重申一下,我们所掌握的观测事实,固然可以归因于支配大爆炸自身的早期物理学的某些特殊性质,而暴胀理论指出了另一条途径,并获得了更加令人满意的解释。它们之间的分歧在于暴胀可以得出一个比简单大爆炸大得多的宇宙。
    下面通过一个三维情形的类比来帮助我们理解四维空间。任何一个站在保龄球上的人,当他掉下来时马上就会意识到这是一个球面。那么对于一个很大的球,比如我们幸福地生活其上的地球,又会如何呢。即便不是一目了然,我们也很容易发现自己是站在一个曲面上。超出我们印象的是,远在古希腊时期人们就已经知道地球是个球体,他们甚至还成功地测量出了它的直径。而看到一艘船消失在地平线下提醒人们地球表面是弯曲的。现在想象我们正在一个比地球大上万亿倍的球面上,那么所有的实验都会显示这是一个真正的平面。球面的曲率是如此之小,根本测量不出来。出行的船只似乎永远也走不到地平线下。

暴胀之后

    经过暴胀之后的宇宙就像上面最后的球面一样,因为它膨胀到了如
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!