按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
因于不完备信息的观点不足为信。值得注意的是,普朗克( Max
Plank)早就反对描述第二定律的不完备信息的观点。他在《论热力学》一书中写道:
第二定律的有效性以种种方式依赖于进行观测或实验的物理学家或化学家的技能,这种假设是荒唐的。第二定律的主旨与实验无关;这个定律简明指出,自然界中存在一个量,它总是在所有自然过程中以同样方式变化。
这一普遍形式所述的观点可能正确,亦可能不正确;但无论它正确与否,它将依然如此,不管地球上是否存在思考和观测的生物,以及假定他们存在,亦不管他们是否能够以 1位、2位乃至100位小数点的精度测量物理或化学过程的细节。这个定律的局限(如果有的话),必定同它的基本思想一样,存在于相同的范畴之中,存在于受观测的自然,而不在于观测者。这个定律的演绎所要求的人的经验是无足轻重的;因为,事实上,它是我们获取自然法则知识的唯一途径。
然而,普朗克的观点仍然是孤立的。我们讲过,大多数科学家都把第二定律看作近似的结果,或看作主体观点向物理世界的入侵。玻恩( Max
Born)就在一句名言里断言, “ 不可逆性是无知介入物理学基本定律的后果。 ”
我们认为,用传统方式表述的物理学定律描述了一个理想化的、稳定的世界,一个与我们所生活的动荡的、演化的世界完全不同的世界。抛弃不可逆性平庸化的主要原因是,我们不再把时间之矢仅仅与无序增加相联系了。非平衡物理学和非平衡化学的最新进展就指向了相反的方向。它们明确表明,时间之矢是秩序的源泉。这在 19世纪以来就已周知的诸如热扩散这样的简单实验中已经表现得很清楚了。我们考察一个包含两个组分(氢气和氮气)的容器,加热容器的一端而冷却另一端(见图1。1)
。当其中一个组分充满热的部分而另一个组分充满冷的部分时,系统演化到一个定态。不可逆的热流产生的熵导致建序过程,这种过程离开热流是不可能发生的。不可逆性既导致有序也导致无序。
不可逆性的这种建设性作用在非平衡导致新形式的相干那种远离平衡的情况中甚至更为显著。(在第二章,我们要回到非平衡物理学。)我们现在知道,正是通过与时间之矢相联系的不可逆过程,自然才达到其优美和复杂之至的结构,生命只有在非平衡的宇宙中才有可能出现。非平衡导出了一些概念,这些概念我们将在第二章详细介绍,如自组织和耗散结构。在《从存在到演化》一书中,基于过去数十年非平衡物理学和非平衡化学的显著发展,我们总结了以下的结论:
1。不可逆过程(与时间之矢相关)像物理学基本定律描述的可逆过程一样真实,它们并非相当于加在基本定律上的近似。
2.不可逆过程在自然中起着基本的建设性作用。
这些概念对关于动力学系统的新潮思想有什么影响呢?玻尔兹曼十分清楚,在经典动力学中根本不存在不可逆性的类似物,于是,他断言,不可逆性只能从关于我们宇宙早期阶段的假定中导出。我们可以维持我们对动力学的通常表述,但我们必须用适当的初始条件来补充它们。在这种观点看来,原初宇宙是非常有组织的,从而处于一种不大可能的状态——一种许多近著中仍然接受的看法。我们宇宙中盛行的初始条件导致许多有意义的、基本上悬而未决的难题(见第八章),但我们认为玻尔兹曼的论证不再站得住脚了。不管过去如何,目前存在着两类过程:现有动力学的应用已证明很成功的时间可逆过程(亦即在经典力学中月球的运动或在量子力学中氢原子的运动),以及过去和未来之间存在不对称性的不可逆过程(如加热情形)。我们的目标是提出一种新的物理学表述,它与任何宇宙学考虑无关地解释这些性态之间的差异。对于不稳定系统和热力学系统,这确实可以做到。我们可以克服时间可逆动力学定律与以熵为基础的自然演化观之间表面上的矛盾。但我们不要超越我们自己。
大约 200年前,拉格朗日(Jossph-Louis
Lagrange)以牛顿定律为基础把分析力学描述为数学的一个分支,在法国科学文献中,它常被称作 “ 理性力学 ” 。在这种意义上,牛顿定律确定了理性的定律并代表一种绝对普遍性真理。自从有了量子力学和相对论,我们开始知道这并不是那么回事。现在,将类似的绝对真理地位赋予量子理论的诱惑又很强烈。在《夸克和美洲豹》一书中,盖尔曼断言, “ 量子力学不仅仅是一个理论,它更是所有当代物理学都必须适合的框架。 ” 真的是这样吗?我已故的朋友罗森菲尔德( Leon
Rosenfeld)指出: “ 每一个理论都是以通过数学的理想化所表达的物理概念为基础的,它们被引进用以给出对物理现象的恰当描述。如果不知道其有效范围,没有一个物理概念是被充分定义的。 ”
我们将要描述的,正是物理学基本概念,诸如经典力学中的轨道或量子理论中的波函数,所需的这一“有效范围”。这些界限与我们将在下一节中简要介绍的不稳定性和混沌概念是相关的。一旦我们包括了这些概念,就得到了自然法则的新表述。这个法则不再建立于确定性定律情形下的确定性,而是建立于概率之上。而且,在这种概率表述中,时间对称性被打破了。宇宙的演化特性必然在物理学基本定律之中得到反映。记住怀特海所叙述的关于自然可理解性的思想(见第 1节):我们经验中的每一个要素都必须被包括在一个由普遍概念组成的连贯系统中。以这种自然法则的重新表述为基础,我们现在就可以完成玻尔兹曼在一个多世纪前所开拓的工作。
值得注意的是,许多大数学家,如波莱尔( Emile
Borel),也明白有必要克服决定论。波莱尔指出,对孤立系统(如月球…地球系统)的考察总是理想化作法,只要我们离开这一还原论观点,决定论就会垮台。 ” 这正是我们的研究所要显示的。
III
每个人在一定程度上都熟悉稳定系统和不稳定系统的区别。例如,考虑一个摆,假设它最初处在平衡态,此时它的势能最小。若小小的扰动之后它返回平衡态(参见图 1.2),这系统表示一个稳定平衡态。相反,若我们把一支铅笔用头部立起来,则最小的扰动都会使它倒下,这给我们一个不稳定平衡态的模型。
在稳定运动和不稳定运动之间有一个基本的差别。简言之,稳定动力学系统是初始条件的小变化产生相应小影响的系统;但对一大类动力学系统来说,初始条件的小扰动会随时间被放大。混沌系统是不稳定运动的极端例子,因为不同初始条件确认的轨道,不管多么接近,都会随时间推移指数地发散。这就叫 “ 对初始条件的敏感性 ” 。一个通过混沌而放大的经典例证是 “ 蝴蝶效应 ” :蝴蝶在亚马孙流域扇动它的翅膀就可能影响到美国的天气。我们在后面还会看到混沌系统的一些例子(参见第三章和第四章)。
确定性混沌这一术语也已进入混沌系统的讨论。如牛顿动力学中的情形所示,运动方程确实是确定性的,即使某个特定的结局是貌似随机的。不稳定性这一重要角色的发现,导致了以前当作是一个封闭学科的经典动力学的复苏。事实上,直到最近,牛顿定律所描述的所有系统都被认为是相似的。当然,众所周知,下落石头的轨道问题比“三体问题”,如太阳、地球和木星的环绕问题,要容易解决得多。然而这一问题更多地被认为是一个单纯的计算问题。到 19世纪末,庞加莱才表明事实并非如此。问题取决于动力学系统是否稳定而有根本的差异。
我们提到了混沌系统,但还有其他类型的不稳定性有待考察。让我们首先用定性的术语,在不稳定性导致动力学定律范围扩展的意义上进行描述。在经典动力学中,初始条件由位置 q和速度v(或者动量p)确定。'注'
一旦这些量已知,我们就可以用牛顿定律(或任何其他的动力学等效表述)来确定轨道。我们可以在坐标和动量所形成的空间中用点(q 0 ;p 0 )表示动力学状态,这就是相空间(图1.3)。除了考虑单个系统,我们也可以考虑一簇系统 ——“ 系综 ” ,它自本世纪初爱因斯坦和吉布斯( Josiah
Willard Gibbs)的先驱性工作以来被如是称呼。
'注'为简便起见,甚至我们考虑的系统由多个粒子组成时,我们仍使用一个字母。
在这里,复述一下吉布斯的《统计力学基本原理》一书著名前言中的部分内容是有益的:
我们可以想象许多性质相同的系统,这些系统在给定时刻的构造和速度不同,不仅仅是细微地不同,而且它所以不同乃是为了包含每一种可想象的构造和速度组合。我们在此提出问题,不是通过相继的构造跟踪一个特定系统,而是确定整个系统在任何给定时刻如何分布于各种可信的构造和速度之中,其时分布已形成了一段时间。……
经验上确定的热力学定律表达大量粒子系统的近似的、可能的行为,或更准确地说,它们把此种系统的力学定律表达为好似多个人,这些人没有本事把握与单个粒子相关的数量级的量,他们也不能足够多地重复其实验,以获得哪怕是最可能的结果。
吉布斯通过系综方法把群体动力学引入了物理学。系综由相空间中的点“云”来描述(参见图 1.4)。这种点云由一个有简单物理解释的函数 ρ ( q,p,t)来描述: