友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
荣耀电子书 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

挑战直觉灵感-第章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



    解:'沙漏计时器'    
        首先同时让10分钟和7分钟的沙漏计时器开始计时。    
          7分计时器的沙子漏完的同时,将它翻转过来。    
         10分计时器的沙子漏完的同时,将它翻转过来。    
         7计时器的沙子再次漏完的同时,不翻转7分计时器,而是把10分计时器翻转过来。    
         10分计时器的沙子再次漏完的时候就是由开始到此时的18分钟。(图略)    
         为什么会出现18分钟呢?能从这个图里看出来吧。①部分的4分钟漏掉的沙子,在②部分的“逆流”的时候花了4分钟。    
    


第二部分第1节

    第三篇      金钱篇    
                       令人爱不释手的    
                        直觉型智力测验    
    《金钱篇》的功能    
            对于喜欢智力测验的人来说,算术数学是其中非常有趣的    
    游戏道具之一。但遗憾的是,世界上还有很多人讨厌算术和数学。    
    这些人常常向老师们提出质疑:“老师,数学这东西到底有什么用呢?”    
             对这个问题该怎么回答呢?我本人有自己的看法和观点。    
    但是因为比较冗长,在此就不再多说了。    
                                           
    一般市民经常使用的数学和算术基本是在买东西的时候,以及和金钱有关的事情上。在第三篇,我们将对这一类智力测验进行讲解。    
         这些题大多数要依靠对数的感觉来进行解答,但是为了提高解题效率,突发的灵感也是十分有用的。    
            有的人在生活中花钱的时候会耍一些损人利己的小伎俩。奉劝大家不要这样做。    
    1。买卖高手    
    问:用定价的7折买下了一种商品,在买价的基础上又加价4成卖出。    
        请问,是赚了定价的百分之多少,或是损失了多少?消费税不用考虑。可能的话,请在十分钟内默算回答。    
    提示:把它换成具体的数值再考虑一下。    
    解:。'买卖高手'    
        我们用具体数值来看一下。例如,假设定价是100元,由于买价是7折,所以是70元。卖价是在70元的基础上加了4成,所以是98元。    
         赚了28元,这是定价100元的28%。    
        一下子解开这个题的人会觉得:“什么呀,这个题一点都没有意思。”但是,由于错觉,有很多人可能会回答,是“赔了2%”。    
    答案:赚了28%。    
    2。夏威夷购物    
    问:去夏威夷买一些土特产,有11元的东西和8元的东西要买。一共花了93元。    
       请问,11元的东西和8元东西各买了几个?    
    (图略)    
    提示:有两个未知数,但是却只有一个等式。也就是说,不用二元一次方程式就解不出来吧。。。。。。但要注意,这个个数是自然数。这是解题的关键。    
    解:'夏威夷购物'    
    用93减去11的倍数,如果其结果正好是8的倍数的话,就可以了。    
    93…11×1=82(不是8的倍数)    
    93…11×2=71(不是8的倍数)    
    93…11×3=60(不是8的倍数)    
    。。。。。。    
    依次类推,符合问题条件的是下面这种情况。    
    93…11×7=16(8×2=16)    
    答案:11元的东西有7个,八元 的有2个。    
    3。六重玩偶    
    问:下图是俄罗斯的一种民间的玩偶工艺品。其构造是:大人玩偶里面有小人玩偶,小人玩偶的里有更小的玩偶。。。。。。    
        有一个特产商店里出售这种六重玩偶,一整套的价格是8700日元。也可以单卖。大小玩偶的差价是300日元。(买一套的话没有折扣)    
    那么,请问,里面最小的那个玩偶多少钱?    
    (图略)    
    提示:用代数的思维方法来解这道题,就比较方便。    
    解:'六重玩偶'    
    最里面的玩偶假设用□元表示,    
    第二小的是□+300,    
    第三小的是□+300+300,    
    。。。。。。    
    第六个(最大的人偶)是□+300+300+300+300+300。    
    所有这些全部加起来,是□×6+300×15=□×6 + 4500    
    因为 上面的式子应该等于8700,    
    □×6+4500=8700    
               □×6=4200    
                   □=700    
    答案:700日元。    
    4。爱情与金钱是两回事    
    问:女人交给男人100元钱的话,两人手里有同样多的钱。男人交给女人100元钱的话,女人拥有的钱是男人的2倍。    
    请问,男女原来各有多少钱?    
    (图略)    
    提示:用二元方程式可以解答。不过稍微动动脑筋也可以默算出来。    
    解:'爱情与金钱是两回事'    
        即使不列方程式,而以两人手中钱数相等(女人向男人交100元钱的状态)为前提(男人向女人交200元钱的话,女人手中的钱是男人的2倍)考虑,就可以了。    
        我们可以这样猜,两人各有100元、200元。。。。。。猜到600元 的时候,就有眉目了。    
        因此结果就是男人从600元里面拿出100元返还给女人,即女人有700元,男人有500元。    
    答案:女人700元,男人500元。    
    5。公平?的分担    
    问:师哥对师弟A和B说:“今天到我家喝酒吧,我家有两瓶红酒。小A你是爱喝酒的人,你就带三瓶相同的红酒来吧。小B你就带5000日元的酒钱过来吧。”    
       三个人喝5瓶红酒,每人喝相同的量。每人喝的部分正好相当于5000日元。    
       师哥对师弟们说:“那么,我和小A把小B的钱分一下就公平了吧。我们提供的都是现成的酒,所以我分2000日元,小A分3000日元就没问题了。”    
        这种分配公平吗?不公平的话,那是谁占了多少便宜呢?(批发价格和零售价格的差额不考虑)    
    (图略)    
    解:'公平?的分担'    
        为了方便计算,我们假设一瓶红酒可以装3杯,5瓶共有15杯。3个人分的话是每人5杯。    
         师哥准备了2瓶酒(6杯)但喝了5杯,实际上他只提供了1杯。小A准备了3瓶(9杯)但也只喝了5杯,所以说他实际上提供了4杯。因此小B的5000日元应该按1:4的比例分配。也就是说,师哥1000日元,小A4000日元就对了。    
    答案:不公平。师哥多得了1000日元。    
    6。零钱无用    
    问:有1000日元的纸币两张,500日元的硬币3枚,10日元的硬币2枚。在不允许找零钱的情况下,这些钱可以买多少组不同金额的东西呢?(消费税不考虑)    
    (图略)    
    解:'零钱无用'    
       首先,我们不考虑十位上的数(换句话说,10日元硬币)。    
        100日元的纸币2枚和500日元的硬币3枚能组成的金额是500日元 ~3500日元。以500日元为基准,也就是说,有7组。    
        对以上每组来说,十位可以是0,或者是1,或者是2,共有3种可能。    
        所以7×3=21(组)    
        除此之外,再加上“单独的10日元”和“单独的20日元”的情况,共计21+2=23(组)    
    答案:23组。    
    7。令人怀念的存钱罐    
    问:收拾屋子的时候,突然发现了小时候的一个存钱罐。摔开一看,里面有1日元、5日元、10日元的共10枚硬币,共计40日元。请问,每种硬币有几枚?    
    (图略)    
    提示:1日元、5日元、10日元的至少各有一枚吧。    
    解:'令人怀念的存钱罐'    
        三种不同硬币至少各有一枚,这种情况下共计是16日元(1日元+5日元+10日元)    
        从10枚40日元里减掉它们,就是7枚24日元。假设这7枚都是1日元的硬币,也就是7日元,那么24日元里面就少了17日元。    
        分别把1日元用5日元和10日元互换,就是说把多4日元和多9日元组合起来,以拼凑出那17日元。    
    这种组合只能是   4日元+4日元+9日元    
    就是说,把两枚一日元的换成5日元,再把1枚1日元的换成10日元。    
    答案:1日元5枚,5日元3枚,10日元2枚。    
    8。 '5日元和1日元的邂逅'    
    问:如图1所示,5日元和1日元硬币各3枚在大街上碰面了。怎样巧妙地移动才能形成像图2那样的排列呢?    
    注意:请按以下规则移动。    
    ①自己前面如果有空位的话,就可以向前移动到空位。    
    ②前面有对方的硬币,并且对方硬币的前面有空位的话,可以跳过对方硬币进入那个空位。    
    ③不能跳过与自己相同的硬币。    
    ④不能跳过两个以上的硬币。    
    ⑤不能后退。    
                                  图略    
    解:'5日元和1日元的邂逅'    
          象下面那样移动即可。(只用数字来表示)(图略)    
    答案:(略)    
    


第二部分第2节

    9。 5日元和7日元    
    问:有若干5日元和7日元邮票,把它们无论怎样组合,也不可能出现8日元和9日元的情况。    
    在这种不可能出现的金额里面,最高金额是多少日元?(图略)    
    提示:5日元和7日元组合不能形成的金额应该是5和7的倍数以外的数。明白这一点,是解题的前提。    
    解:'5日元和7日元'    
    先用下面这样的5行来考虑。    
    1 6 11 16 21 26 。。。。。。    
    2 7 12 17 22 27。。。。。。    
返回目录 上一页 下一页 回到顶部 2 1
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!